2008 DNS Cache Poisoning Vulnerability
Cairo, Egypt
November 2008

Kim Davies
Manager, Root Zone Services
How do you attack the DNS?
A typical DNS query
A typical DNS query
The DNS is not secure

- A computer sends a “question” to a DNS server, asking a question like “What is the IP address for icann.org?”
- The computer gets an answer, and if the answer appears to match the question it asked, trusts that it is correct.
- There are multiple ways that traffic on the Internet can be intercepted or impersonated, so that the answer trusted is false.
Exploits rely on the server providing the false answer responding quicker than the correct server can give the right answer.
Winning the race

Exploits rely on the server providing the false answer responding quicker than the correct server can give the right answer.
Winning the race

Exploits rely on the server providing the false answer responding quicker than the correct server can give the right answer.
Cache poisoning

- To improve efficiency, DNS servers typically store results in a cache to speed further lookups.
 - This is the typical configuration at ISPs, etc.
- If an attacker can trick a server to remember a wrong answer, the server will use then to respond to future lookups.
 - One successful attack can therefore affect many users by "poisoning" the cache.
What should match in a DNS transaction
What should match in a DNS transaction

From: 1.2.3.4, port 53
To: 2.4.6.8, port 53
My ref: 12345
Question: icann.org?

From: 2.4.6.8, port 53
To: 1.2.3.4, port 53
Your ref: 12345
Question: icann.org?
Answer: 192.0.2.0
What should match in a DNS transaction
What should match in a DNS transaction
What should match in a DNS transaction

1. From: 1.2.3.4, port 53
2. To: 2.4.6.8, port 53
3. My ref: 12345
4. Question: icann.org?

From: 2.4.6.8, port 53
1. To: 1.2.3.4, port 53
2. Your ref: 12345
4. Question: icann.org?

Answer: 192.0.2.0
Possible combinations

Probabilities are approximate for illustration purposes
Possible combinations
Probabilities are approximate for illustration purposes

From: 1.2.3.4, port 53
To: 2.4.6.8, port 53
My ref: 12345
Question: icann.org?

From: 2.4.6.8, port 53
To: 1.2.3.4, port 53
Your ref: 12345
Question: icann.org?
Answer: 192.0.2.0

1 in 3*
Possible combinations

Probabilities are approximate for illustration purposes
Possible combinations

Probabilities are approximate for illustration purposes
Possible combinations

Probabilities are approximate for illustration purposes

From: 1.2.3.4, port 53
To: 2.4.6.8, port 53
My ref: 12345
Question: icann.org?

From: 2.4.6.8, port 53
To: 1.2.3.4, port 53
Your ref: 12345
Question: icann.org?
Answer: 192.0.2.0

1 in 1

1 in 1

1 in 3*

1 in 1

1 in 65,000
Possible combinations

Probabilities are approximate for illustration purposes
Possible combinations

Probabilities are approximate for illustration purposes
What has been discovered recently?
This attack is highly effective

- Dan Kaminsky identified there is a straightforward way to flood the recursive server with lots of answers, so that the right combination would be sent very quickly (a few seconds).

- By querying for random hosts through within a domain (0001.targetdomain.com, 0002.targetdomain.com, etc.), you can take over the target domain by filling the cache with bad referral information.
How effective?
Courtesy John Dickinson (jadickinson.co.uk)
How effective?

Courtesy John Dickinson (jadickinson.co.uk)

Diagram of DNS Spoofing Performance showing time to success of real spoofer.
Why this attack also concerns authorities?

- If a name server provides both recursive and authoritative name service, a successful attack on the recursive portion can store bad data that is given to computers that want authoritative answers.

- The net result is one could insert or modify domain data inside a domain.
Short term solutions
1. Maximise the amount of randomness

- Most implementations use randomised transaction numbers already. (The risk with that was discovered years ago, and fixed in most software)

- The port number 53 is assigned by IANA for DNS. However it is only required to be 53 as the destination port, not the source port.

- The patches that have been released in the last few months work by randomising the source port for the recursive server.
Possible combinations (2)

Probabilities are approximate for illustration purposes
Possible combinations (2)

Probabilities are approximate for illustration purposes
From: 1.2.3.4, port 53
To: 2.4.6.8, port 53
My ref: 12345

Question: icann.org?
Answer: 192.0.2.0

Possible combinations (2)
Probabilities are approximate for illustration purposes
2. Disable open recursive name servers

- The attack is not effective if the attacker cannot send question packets to the name server.

- If you must run a recursive name server, limit access to only those computers that need it (e.g. your customers). They will still be able to execute the attack, but the exposure is reduced.

- Turning off open recursive name servers is a good idea anyway, because they can be used for other types of attack (denial of service)
3. Use upper/lower case to add randomness

- The answer should preserve the same capitalisation as the question. By mixing upper and lower case, it provides more combinations that an attacker has to guess.

- This is a way of adding extra entropy to the DNS without modifying the protocol.

- Still under discussion (not implemented)
iCAnn.org?
Possible combinations (3)

Probabilities are approximate for illustration purposes
From: 1.2.3.4, port 53
To: 2.4.6.8, port 53
My ref: 12345
Question: icann.org?

From: 2.4.6.8, port 53
To: 1.2.3.4, port 53
Your ref: 12345
Question: icann.org?
Answer: 192.0.2.0

Possible combinations (3)
Probabilities are approximate for illustration purposes
Net effect of short term solutions

- Old (unpatched) math ≈ 16-18 bits of entropy
 New (patched) math ≈ 32-(34+length) bits of entropy

- More entropy makes these types of attacks harder, but does not prevent them

- Computer processing power and network speeds will only increase in the future, improving the viability of these attacks
Long term solution
Introduce security to the DNS

- The DNS is insecure. Upgrade the DNS for security.
- DNSSEC is the current answer to this problem.
- This attack provides clear incentive to deploy a solution like DNSSEC, because without security the DNS will continue to be vulnerable to cache poisoning attacks.
Impact on TLDs

- At the time the vulnerability became known, a survey of TLD operators found that 72 TLDs had authorities that were providing open recursive service.
- ICANN contacted all TLDs affected:
 - Explained the situation, and the urgency to fix it
 - Provided advice on how to reconfigure name servers
 - Expedited root zone change requests, if required
Checking tool

- We developed a tool which we ran daily against TLDs, and shared results with affected TLDs.

- It became clear a web-based tool where TLD operators could self-test would be useful, so it was re-implemented this way.

- The tool is not TLD specific, and works with any domain name.
Cross-Pollination Check

The discovery of a highly-effective cache poisoning attack that can affect name servers providing recursive name service has made it important that such servers be patched to mitigate against the problem. Furthermore, the risk of cache poisoning for servers that share recursive and authoritative functions can cross-pollinate the authoritative function with incorrect data. This tool is designed to assess the authorities for a given domain and determine whether they provide vulnerable recursive service.

Provide a domain name to analyse icann.org Submit

Safe.
The servers tested for ICANN.ORG appear to not be vulnerable to cache poisoning.

<table>
<thead>
<tr>
<th>Name server</th>
<th>IP Address</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.IANA-SERVERS.NET</td>
<td>192.0.34.43</td>
<td>Not recursive</td>
</tr>
<tr>
<td>B.IANA-SERVERS.ORG</td>
<td>193.0.0.236</td>
<td>Not recursive</td>
</tr>
<tr>
<td>C.IANA-SERVERS.NET</td>
<td>139.91.1.10</td>
<td>Not recursive</td>
</tr>
<tr>
<td>D.IANA-SERVERS.NET</td>
<td>2001:648:2c30::1:10</td>
<td>Not recursive</td>
</tr>
<tr>
<td>NS.ICANN.ORG</td>
<td>192.0.34.126</td>
<td>Not recursive</td>
</tr>
</tbody>
</table>

Vulnerability checking tool
http://recursive.iana.org/
How the tool works

The tool checks for the two aspects that enable the attack
How the tool works

The tool checks for the two aspects that enable the attack
How the tool works

The tool checks for the two aspects that enable the attack
How the tool works
The tool checks for the two aspects that enable the attack
How the tool works

The tool checks for the two aspects that enable the attack.
How the tool works
The tool checks for the two aspects that enable the attack
over 100,000 domains tested
Work continues

- We are still working with the last remaining TLDs that are affected. Our goal is to reduce the number to zero.

- It is anticipated a ban on open recursive name servers will be instituted as a formal IANA requirement on future root zone changes.

- Work on DNSSEC, and signing the root, to facilitate a longer term solution
Thanks!
kim.davies@icann.org