

Experiences Building an IDN
Domain Name Registry

Chris Wright
CTO - AusRegistry International
ICANN no. 39, Cartagena, Colombia
9th December 2010

AusRegistry International

• Located in Melbourne, Australia

– Involved in Domain Name Industry since 1999

– ICANN Accredited Registrar since 2000

– .au Registry Operator since 2002

• Domain Name Registry Services

– Registry Systems and Software Provider

– Consultancy Services

– Our software and consultancy services have
been used by several other TLDs including IDN
enabled ccTLDs

Overview

• You may be considering applying for an IDN
gTLD, or for an IDN under the ccTLD fast track
program

• Alternatively you may want to allow IDNs under
your ASCII TLD

• At some point, it is likely that you will need to
begin supporting IDNs in your Registry Solution
– Some notes from our experiences
– Share what we have learnt
– High-Level overview of part of our solution
– Some interesting points to think about

So why did we implement IDNs?

• We supply Registry software &
services to other TLDs

• We need to remain innovative and up-
to-date

• We need to provide what our
customers want

• We believe IDNs are integral to
furthering the reach of the Internet

Our goals

• Implement IDNs in an RFC compliant way

• Do so generically and flexibly

• Ensure implementation is easily
maintainable

• Ensure implementation may be
customised if required by customers

• Configurable to suit various local policies
without sacrificing performance, security
or stability

As responsible TLD managers we must...

• Minimise public, Registrant and Registrar
confusion

• Protect against phishing and other
misdirection style attacks

• Maintain
– high security standards
– high performance standards
– policy rich controls (where relevant)

• Protect the reputation of our namespace
• Manage our TLD the way an important asset

should be managed

With that in mind...

• Some of the more important aspects to
consider in a more responsible implementation
of IDNs include:
– Developing IDN specific policy
– Fully Internationalising your Registry Platform
– Blocking similar registrations
– Bundles
– Variants of your IDN zone
– Effects on DNS
– Security considerations
– Performance impacts
– Effects on Registrars, Registrants and end users
– Implications for Registry Website & other interfaces

Registry Implementation

IDNA – Internationalised Domain Names
in Applications

• Whilst it is a protocol in the dictionary
definition of the term

• It is NOT a protocol in the sense that DNS,
HTTP or EPP are protocols

• It’s essentially three main things:
– A way of converting a Unicode string into an

ASCII string so that it can be used in the DNS
protocol

– A sequence of steps that a Registry must follow
before accepting a name for registration

– A sequence of steps that an Application must
follow when looking up a name in the DNS

Why must we understand all of IDNA?

• IDNA assumes any required pre-processing
has been performed by Registrars including:

– ensuring the name is in Unicode NFC form

– any other local processing that may be required
(but is not defined in the IDNA specification) eg.
case folding / lower casing

However…

• To maintain the integrity of the Registry it is
important to check that all rules have been
followed.

Steps a Registry Must Follow

• Verify that the name is in NFC form, reject if not
• If domain provided in A-label format, generate

U-label version using punycode
• If domain provided in U-label form it is strongly

advised not to accept it to avoid any
ambiguities

• Validate that both A-label form and U-label
form are in fact related, reject if not

• Reject any name with leading combining marks
• Reject any name that contains consecutive

hyphens in the 3rd and 4th positions (in the U-
label)

Steps a Registry Must Follow (cont.)

• Verify that the domain contains only valid
code points as defined by the IDNA
standards, reject if it doesn’t

• Apply the joiner rules (context j rules), reject
if these rules fail

• Verify that for each context o code point, a
rule exists in the standard and that when
the rule is applied the domain name is still
valid, reject if any of these rules fail

• If the domain contains any right-to-left
characters apply the BIDI rules, reject if any
fail

Basic Implementation Summary

• Implementing these steps is relatively
simple as they are well defined in the
protocol

• A simple implementation of these can be
achieved very quickly

• However there are many methods that
can be used to efficiently implement
these steps in an elegant manner

Now that we have a valid IDN name

What else do we need to do?

Zone specific processing (policy)

• What needs to be done, how and why it
should be done, is not documented
anywhere

• However there are some VERY important
steps that should be followed:
– Checking for duplicate names (including

complex equivalencies such as those created
by the use of combining marks etc. – think
variants or bundles)

– Apply local policies
– Validating against our language rules
– Checking reserved lists

Checking for Duplicate Names

• Duplicate domains are domains that are
considered ‘the same’ as one another

• For ASCII domains ‘the same’ is simply a
case insensitive compare, e.g.
– example.com

– Example.com

– EXAMPLE.com

– ExAmPlE.com

• In this particular case this is enforced by the
DNS protocol

However with IDNs...

• There are many more cases where
duplicate registrations may exist e.g.

• No single, simple rule can be applied, i.e.
just lower casing does not help

Convention,
visually confusing

or historic

Non-visual reasons Technical reasons

café.com
cafe.com

١١١١١.com
11111.com

أ .com
(U+0627,U+0654)

com.أ
(U+0623)

Duplicate Example

• ASCII John’s Cafe (because of convention)

– johnscafe.com  Sacrificing the é

• IDN John’s Café (because now we can)

– johnscafé.com

• Shouldn’t the two be considered the
same name? i.e. Duplicates?

Implementing duplicates – The variant
generation method

• The idea that one character is a variant of
another character e.g.
– ‘e’ and ‘é’

• When a domain is created using one
representation the other representation
is also considered registered or ‘blocked’
– cafe.com

– café.com

• This is done by ‘calculating’ all of the
variants

Implementing duplicates – The variant
generation method (cont.)

• This can happen at time of registration in
which case all the variants are then
stored for later comparisons

or

• This can happen on input to all
commands (obviously very inefficient)

Implementing duplicates – The variant
generation method

• Calculating and storing duplicates introduces overhead
• Consider a name where there is only one variation of

several of the characters in the name e.g.

e  é

cafeeeeeeeeeeeeeeee.com
cafeeeeeeeeeeeeeeeé.com
cafeeeeeeeeeeeeeeée.com
cafeeeeeeeeeeeeeeéé.com
.
.
caféééééééééééééééé.com

In this fictitious case there is 2 ^ 16 combinations i.e. 65,536
variations

Implementing duplicates – The variant
generation method

• If we have a domain name with just 32
characters in it, each with one variant we
would have over 4 billion variants

• There has to be a better way!

• And there is...

Implementing duplicates – The canonical
method

• Canonical representation of domain
names isn’t new

• ASCII domain names use the concept, its
built into the protocol - lowercase

• The overall premise is that we assign
each character a canonical form

What do we mean by character?

• A character, for the sake of this discussion, is a sequence of
one or more code points that represents one particular
component of a word.

a
is a character

أ
(single code point) is a character

أ
(multiple code points) is a character

Assigning canonical form

• Each character is assigned a canonical form

• You can think of it as the base form of the
character

• In most cases it just be the character itself

• Sometimes another code point entirely

• Sometimes nothing at all

• The actual character chosen doesn't really
matter – its just a concept

Using the canonical form

• Define all canonical mappings for your zone

• Perform a simple substitution of each
character for its canonical equivalent

– This generates the canonical form of the label
being registered

• Use this canonical form of the label as the
unique key for the domain registration
representing ALL forms of the domain name
(without each of those forms having to be
generated and/or stored)

Using the canonical form

• In our zone we allow the following
characters with the canonical mappings
listed:

a a

c  c

e  e

é e

f  f

Using the canonical form – An example

• We register the name cafe’.com and compute
the canonical form

café.com  cafe.com

• The domain is café.com but the unique label is
cafe. So when someone tries to register
cafe.com we compute the canonical form

cafe.com -> cafe.com

• But this will NOT be allowed as a domain with
that canonical label is already registered

Using the canonical form – Another
example

• The name cafeeeeeeeeeeeeeeee.com maps to
cafeeeeeeeeeeeeeeee.com  cafeeeeeeeeeeeeeeee.com

as does
caféeéeéeéeéeéeéeée.com  cafeeeeeeeeeeeeeeee.com

as does
caféééééééééééééééé.com  cafeeeeeeeeeeeeeeee.com

• So by storing the canonical form and checking all new
registration attempts against it we have blocked all other
registrations without actually having to calculate them all!

More on canonical...

• Mapping names to a canonical form is
nothing new

– Exactly what happens in existing domain
name registries when we lower case names

– Implied canonical mapping between upper
case and lower case (implemented by a
function)

– Just also happens to be enforced by the DNS
protocol itself

Making canonical work for us

• Just as we lower case the domain name
provided to Registry functions such as:
– Search

– Domain Check / Update

– Reserved List Matching

– WHOIS

– Etc.

• If we apply the canonical mapping to IDN
names passed to registry functions
everything just works

Benefits of using canonical

• It just works
• Its linear time regardless of the size of the

domain names and desired variant
configuration

• It provides speed and efficiency benefits,
especially when compared to variant
generation methods

• It saves space and memory
• Its a simple algorithm that is easy to

implement, less error prone and easier to
optimise

Bundles

Why Bundles?

• Sometimes blocking is just not enough

• In some scenarios it make sense that a
Registrant can make use of multiple
versions of a name e.g.

– cafe.com

– café.com

In simple terms...

• Its the same as the generating variant model, so
it has the same issues
– If in our zone configuration we said that we wanted

the following character variant ‘provisioned’ or used
to create ‘bundles’

١ 1

– And then we registered the name

١١١١١١١١.com

– We still end up with...

Example
• The following variants to be provisioned

١١١١١١١١.com
١١١١١١١1.com
١١١١١١1١.com
١١١١١١11.com
.
.
.
11111111.com

• Which in this case would be 256 variants to be
calculated, stored and provisioned in the zone
file

• Canonical mappings can’t help us here

Bundles (cont.)

• Character variants for blocking of
registrations make all combinations
important

• ... But when considering bundling.. If we
look at the reason people desire variants,
another option is presented

Continuing our example...
• In this case it makes sense that someone may enter

either of the following domains:

١١١١١١١١.com
11111111.com

• But does it really make sense that someone would
type the following domains names:

١1١1١1١1.com
١١١١1111.com

• All combinations need to be blocked (which canonical
mappings will do) , yet only two out of the 256
variants provisioned in the DNS are required.

Introducing Mutual Exclusion

Mutual Exclusion

• Mutual exclusion is not a new concept, it is
used everywhere in modern-day life

• If we apply it to domain name variants we
can achieve the desired behaviour e.g.

Primary Grouping Sub-Grouping

Numerals English Numerals
e.g. 1,2,3,4,5...

Arabic Numerals
e.g. ١٢٣٤٥...

So the rule is...

• If a domain name contains any characters
that are in one sub-group, it is not
allowed to contain any characters from
other sub-groups of the same primary
group to be provisioned in the DNS

• i.e. The characters in one sub-group are
mutually exclusive to the characters in
another subgroup

Returning to our example...

• These are allowed:

١١١١١١١١.com

11111111.com

• But these are not:

١1١1١1١1.com

١١١١1111.com

Primary Grouping Sub-Grouping

Numerals English Numerals
e.g. 1,2,3,4,5...

Arabic Numerals
e.g. ١٢٣٤٥...

Other bundling considerations

• Allowing Registrants to turn parts of a bundle
off or on

• How?

• Impacts on other services offered

• e.g. DNSSEC

• Charging model

• Should there be one?

• Flow on effects to accounting and reporting

• Is a bundle of three domains one registration or
three?

Validating Local Language Rules

What are local language rules?

• In short, they are and can be anything
– Which unicode code points make up the

language

– Handling of edge cases
• aeæ

• ss ß

• Final form sigma

– and so on

• Important that the business rule engine is
flexible and customisable enough to handle
these requirements

Putting it all together

How can we represent IDN configuration?

• In a generic way

• That reduces the management and
configuration overhead

• That is easily understood by non-technical
people

Language Set
• Name
• Description Language

• Name
• Tag
• Description

Language
• Name
• Tag
• Description

Our Solution

Language
• Name
• Tag
• Description

Allowed Code
Points
• List of the
code points
allowed in that
language

Mutual
Exclusion
Groups
• Configuration
of exclusion
groups for the
language

Canonical
Mappings
• List of ALL code
points from ALL
languages in the
Language set
with their
canonical
equivalents

Just the tip of the iceberg!

Performance Implications
• TLD Registries include performance and SLTs

• Validation rules and cross checking that now needs to be
performed has to be implemented as streamlined as
possible, especially when performing domain availability
checks

• A lot of ASCII ‘tricks’ or optimisations are invalidated e.g.

– Byte size != string length

– Byte equivalency is not the only case of equality any
more

– Lower casing is not the only pre-processing required for
uniqueness checks

• Multi-zone registries with mixed IDN and non-IDN zones
will even incur a performance hit on the non-IDN enabled
zones as certain checks still need to be performed

Effects on Registrars, Registrants and End
Users
• It is different to ASCII domains

• Registrars have a harder job to do now

• Interpret what the Registrant wants

• Turn it into something remotely protocol valid (to
map or not to map?)

• Explain all of this to the Registrant

• Provide tools to Registrars

• Ensure consistent message to Registrants and
end users

Many other areas to consider

• IDNA – Internationalised Domain Names in Applications
• Registry Systems are also Applications in fact they are a

collection of many different applications
• We have to implement the application and the Registry

portion of IDNA

• Changing Language rules in an already established zone!
• Effects on EPP

• Command Extensions
• Protocol Extensions
• Returning Variants

• Security Considerations
• Puny Code Overload
• Puny Code Reverse Engineering
• Handling of supplementary characters

Many more areas to consider

• Internationalising your Registry

• Unicode versions understood by software in use

• Registrars, Registrants

• Effects on DNS

• Increase in zonefile size

• DNAME vs NS records

• Increase in complexities

• Infrastructure Requirements

• IDNs, variants & DNSSEC

IDNs are hard (to do right)...

• However…

• There are many creative and innovative
solutions to all of the issues I have mentioned

• Start experimenting & share knowledge

• Help is out there – come and see us

