

ICANN DNSSEC Workshop

Comcast's Operational Experiences 14 March 2012

DNSSEC Deployment Status

- We began working on this in 2008 (see timeline)
- We completed our DNSSEC deployment in January 2012
 - All customers use our validating resolvers (>18.1M homes)
 - All Comcast domain names signed (>6,000)

Lessons Learned in Testing & Early Deployment

- Is a software upgrade required?
- Can the servers handle incremental CPU load?
- Network equipment may need to be updated
 - Will they permit both UDP and TCP traffic on port 53?
 - Can they properly handle larger DNS responses? (with EDNSO, response may go from 512 bytes to 4,000 bytes)
 - Can they handle fragmentation?
- Authoritative infrastructure may need to be augmented to support signing your zones
 - Zone signing can be resource intensive
 - This can be complex if you have many sub-zones

Lessons Learned in Testing & Early Deployment

- Best way to figure this out is to test in the lab and validate with production traffic under close observation and measurement
- If you plan this at the same time as your IPv6 upgrade, they incremental cost and work is more modest than it otherwise would be.
- Look for operational processes that may need to be adjusted to support DNSSEC validation (i.e. troubleshooting, customer FAQs)
- Add new Key Performance Indicators (KPIs) or metrics, such as:
 - # of SERVFAILs (set an alarm threshold)
 - SERVFAILs as a % of all RCODEs (set an alarm threshold)
 - When top-10 domains sign, ad hoc temporary monitors?
- For signing your zones, be sure your registrar has an automated process for updating / inserting DS records

More Recent Lessons Learned at Scale

- Different software vendors interpret the RFCs differently, causing irregular validation results
 - CNAME at the zone apex, pointing to another zone
 - mail.comcast.net in CNAME mail.g.comcast.net (a GSLB)
 - Worked if you used BIND, but not Vantio (SERVFAIL = ☺)
 - So after signing a complex domain, we recommend you validate using different resolvers
- We've observed registries doing 'interesting' things. Such as:
 - One big registrar has a "Premium" service that automatically includes DNSSEC (DNSKEY, RRSIGs, DS inserted in the TLD)
 - If you downgrade from this service, your DNSKEY and RRSIGs are deleted – BUT the DS record is not removed from the TLD
 - This causes the domain to fail validation (SERVFAIL = ②)
- On our authoritative servers, not many DNSSEC-related RR queries as of yet (expected based on the state of validation)
- Of the top 2,000 domains:
 - 1.75% signed which is oddly close to the % with AAAA RRs

More Recent Lessons Learned at Scale

- As with any new technology or deployment there will be problems
 - Prepare in advance (scripts, processes, testing, practice)
- Most common issue is incorrectly signed zones, usually related to key rollovers (mostly in the .GOV TLD)
- One solution is a "Negative Trust Anchor" to temporarily skip validation for a given domain
 - Only when an engineer has personally verified the failure is due to DNSSEC misconfiguration and, preferably, communicated with the affected domain
 - Can temporarily restore end user access while the domain fixes their problem
 - Does NOT scale, but can be helpful for high traffic and other key domains
 - Probably useful for the next 1 2 years as domains mature and master their signing and key rollover processes
 - Ultimately, this is the responsibility of the domain owner or administrator to get right!

Validation Failure Example – NASA.GOV

- 18 January 2012: Domain performed a Key Signing Key (KSK) rollover
 - Created new key & signed domain with new key
 - Updated DS record in .GOV TLD
 - But did not double sign with old key, which would have ensured both the old and new keys worked simultaneously
 - So the new DS record pointed to the old KSK, which was no longer in the zone
 - Chain of trust broken= validation failure= SERVFAIL

DNSKEY/DS/NSEC status

O Bogus (4)

- nasa.gov/DNSKEY (alg 5, id 36946)
- nasa.gov/DNSKEY (alg 5, id 44670)
- nasa.gov/DNSKEY (alg 5, id 45403)
- nasa.gov/DNSKEY (alg 5, id 60726)

O Secure (7)

Delegation status

⊙ Bogus (1)

gov to nasa.gov

O Secure (1)

Notices

© Errors (1)

nasa.gov/DNSKEY:
DS RRs exist for
algorithm(s) 5 in the
gov zone, but no
matching DNSKEYs of
algorithm(s) 5 were
used to sign the
nasa.gov DNSKEY
RRset.

Validation Failure Example – NASA.GOV

- Customers interpreted this as us "blocking" access to the site, some recommended switching to non-validating resolvers
- "Fixed" temporarily with a Negative Trust Anchor

• In parallel, the domain administrator repaired their zone

Some Measurement Data

Thank You!

For more information:

http://www.dnssec.comcast.net

http://dns.comcast.net

