DNSSEC: A Vision

Anil Sagar
Additional Director
Indian Computer Emergency Response Team (CERT-In)
Outline

• DNS Today
• DNS Attacks
• DNSSEC: An Approach
• Countering DNS Attacks
• Conclusion
DNS Today

• DNS is a distributed dynamic database application with a hierarchical structure and offering a dependable service

• Originally DNS design was focused on data availability and did not include its security

• DNS major components:
 – The Database
 • Domain name space (DNS Tree)
 • Resource Records
 – The Server
 • Name Server
 – The Client
 • Resolvers
DNS Namespace

DNS uses a hierarchical namespace to locate computers

- Root-level Domains
 - .com
 - .net
 - .org
 - .mil

- Top-level Domains
 - .Country
codes

- Second-level Domains
 - microsoft.com
 - cisco.com

- Sub-domains
 - support.microsoft.com
 - srv1.support.microsoft.com

- Host (FQDN)
 - support.microsoft.com
DNS Attacks

• June 1997, Eugene Kashpureff (Alternic founder) redirected the internic.net domain to alternic.net by caching bogus information on the Internic name server.

• In early February 2006, name servers hosting Top Level Domain zones were the repeated recipients of extraordinary heavy traffic loads.

• On 6 February 2007, starting at 12:00 pm UTC, for approximately two-and-a-half hours, the system that underpins the Internet came under attack. Three-and-a-half hours after the attack stopped, a second attack, this time lasting five hours, began.
DNS Hacking Objectives

• Attacking DNS server data
• Attacking the DNS server
DNS Today: Potential Problems

• Original DNS design focused on data availability and did not include security

• DNS design included no authentication

• The DNS protocol does not allow you to check the validity of DNS data

• DNS data can be spoofed and corrupted between master server and resolver or forwarder
Securing DNS

• Built security into DNS systems

• TSIG Transactions
 – Enhancements to secure Server-Server transactions

• DNS Security Extensions (DNSSEC)
 – Enhancements to secure Server-Client transactions
DNSSEC: An Approach

- DNSSEC (short for Domain Name System Security Extensions) adds security to the Domain Name System’s query / response

- Protects against unauthorised DNS data corruption and DNS spoofing

- It provides:
 - origin authentication of DNS data
 - data integrity but not confidentiality
 - authenticated denial of existence

- It is designed to be interoperable with non-security aware implementations
DNSSEC: Characteristics

- Changes to DNS Protocol
 - DNSSEC adds four new Resource Records (RR)
 - KEYRR(DNSKEY): Key Resource Record specifies:
 - the type of key (zone, host, user)
 - the protocol (DNSSEC, IPSEC, TLS, etc.)
 - the algorithm (RSA/MD5, DSA, etc.)

- SIGRR : Signature resource record specifies:
 - the RR type covered (SOA, A, NS, MX, etc.)
 - the algorithm (RSA/MD5, DSA, etc.)
 - the inception & expiration times
 - the signer key footprint

- DS: Delegation Signer
 - a pointer to the next key in the chain of trust
DNSSEC: Characteristics

• NXTRR(NSEC): Next Secure
 – the next name in the zone
 – all the RR types covered by the current name

• The private key is kept off-line and is used to sign the RR sets of the zone file

• The public key is published in the KEY RR

• The public key of a zone is signed by the parent zone private key

• The parent zone signature on the zone’s public key is added to the zone file
What DNSSEC does NOT do

• Does NOT provide confidentiality of DNS responses
• Does NOT protect against DDOS attacks
• Does NOT protect against IP Spoofing
• Is NOT about privacy
• Is NOT a PKI
DNSSEC Query

Root Name server (".")

Second-level Authoritative Server (cnn.com)

Top-level Domain Authoritative Server (.com)

Request for www.cnn.com

Reply [SIG (IP add & PK of .com server) by its private key]

Request for www.cnn.com

Reply [SIG (IP add & PK of cnn.com server) by its private key]

Request for www.cnn.com

Reply [SIG (x.x.x.x) by its private key]

Request for www.cnn.com

Reply

Client

DNS Server

Requested for www.cnn.com

DNS Query

Request for www.cnn.com
DNSSEC – Response Validation

• Validation of a DNS response:
 – Did the matching private key sign the RRSIG RR?
 – Does the hash match the RR data?
 – Does the public key validate?
 • Does the parent have a DS RR?
 • Has the Parent signed the matching RRSIG RR?
 • Does the parent’s key validate?

• Loop until you get to a recognised “trust anchor”

This interlocking of parent signing over child is a critical aspect of the robustness of DNSSEC. It’s also DNSSEC’s major weakness in today’s partial DNSSEC deployment world.
DNSSEC: Chain of Trust

Client

Request for KEY for .com

Reply KEY, SIG RR of .com

Top-level Domain Authoritative Server (.com)

Second-level Authoritative Server (cnn.com)
DNS Defenses

<table>
<thead>
<tr>
<th>Protocol Based Exploits</th>
<th>Defense</th>
</tr>
</thead>
</table>
| DNS reconnaissance | Split-level DNS topologies
Network and Name Server monitoring, intrusion detection
DNSSEC digital signatures to secure DNS data
Server-side access controls
Configuration audit and verification tools |
| Protocol-based denial-of-service | Split-level DNS topologies
DNS redundancy
Stateful firewalling
Server-side access controls
Network and Name Server monitoring, intrusion detection
Patches and service packs |
| Dynamic DNS (DDNS) hacking | Split-level DNS topologies
Network and Name Server monitoring, intrusion detection
Server-side access controls for DDNS
DNSSEC: authentication of DDNS requests
Configuration audit and verification tools
Patches and service packs |
DNS Defenses

<table>
<thead>
<tr>
<th>Application Based Exploit</th>
<th>Defense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer overflow attacks</td>
<td>System and service hardening</td>
</tr>
<tr>
<td></td>
<td>Network and Name Server monitoring, intrusion detection</td>
</tr>
<tr>
<td></td>
<td>Stateful firewalls</td>
</tr>
<tr>
<td></td>
<td>Split-level DNS topologies</td>
</tr>
<tr>
<td></td>
<td>DNS redundancy</td>
</tr>
<tr>
<td></td>
<td>Patches and service packs</td>
</tr>
<tr>
<td></td>
<td>Third-party application-layer security tools</td>
</tr>
</tbody>
</table>
DNS Defenses

<table>
<thead>
<tr>
<th>Trust Based Exploits</th>
<th>Defense</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS registration hacking</td>
<td>Imposition of registration controls</td>
</tr>
<tr>
<td>DNS spoofing</td>
<td>Split-level DNS topologies
Stateful firewalls
Server-side access controls
Network and Name Server monitoring, intrusion detection
DNSSEC digital signatures to secure DNS data
Patches and service packs
Upgrade to latest version(s) of Name Server software (protections against DNS ID hacking)</td>
</tr>
<tr>
<td>Cache poisoning</td>
<td>Split-level DNS topologies
Stateful firewalls
Server-side access controls
Network and Name Server monitoring, intrusion detection
DNSSEC digital signatures to secure DNS data
Patches and service packs</td>
</tr>
<tr>
<td>DNS hijacking</td>
<td>Split-level DNS topologies
Stateful firewalls
Server-side access controls
Network and Name Server monitoring, intrusion detection
DNSSEC digital signatures to secure DNS data
Patches and service packs</td>
</tr>
</tbody>
</table>
DNSSEC: Deployments

• DNSSEC test deployment at IANA
 – This data, including the signed zones, are purely for test purposes and are not to be used in any production capacity

• DNSSEC testbed in
 – Sweden (.se)
 – Russia (.ru)
 – United Kingdom (.uk)
 – Mexico (.mx)
 – Puerto Rico (.pr)
 – Netherlands (.nl)
 – Bulgaria (.bg)
 – Brasil (.br)
 – Malaysia (.my)

• VeriSign
Why DNSSEC is important?

Is this ROI or Return on Risk?

- Total dependence on DNS for the functioning of Internet
- Low security awareness
- Rise in threats

How costly is the exploitation that occurs if we don’t have this protection?
References

• http://www.dnssec.net
• http://www.dnssec-deployment.org
• http://www.ripe.net
• http://www.icann.org
• RFCs: 4033, 4034, 4035 and 3833
Thank you

anil@cert-in.org.in

Incident Response HelpDesk

Phone: 1800 11 4949

FAX: 1800 11 6969

e-mail: incident@cert-in.org.in

http://www.cert-in.org.in