CAs and the New Paradigm

ICANN 47 ccNSO Tech Day
Dan Timpson
Looking Back (2011)

Problem: Hacking/complete compromise of CA system over many months; cert issuance logs erased (no record); 531 or more fake certs issued

Harm: Potentially great (many OCSP checks from Iran). Hacking claims by “Iranian hacker” never verified

Response: Some certs revoked by CA (no complete list). DigiNotar roots became “untrusted” by browsers; CA went out of business
Discussion

- The state of SSL is stronger than ever and continues to incrementally improve.

- Ongoing Industry Improvements
 - CA/B Forum Enhanced BR's & Networking guidelines
 - Improved customer
 - CAs proactively responding to emerging threats

- Forward looking: Good IETF proposals are on the table
 - Certificate Transparency (CT)
 - Certificate Authority Authorization (CAA)
 - Public Key Pinning
CA's, browsers and industry groups are constantly improving standards (Self Regulated)
- Mozilla/Microsoft root program requirements
- CA/Browser Forum (2005 to date) – raised the bar:
 - EV Guidelines revamped (2012),
 - Baseline Requirements updated (2013)
- *New - CA Security Council www.casecurity.org
- WebTrust, ETSI audit requirements (2000 - date)
- Online Trust Alliance (OTA) encourages CA Best Practices

CA's are continuously improving security, processes and responding quickly to issues as they surface (ex. gTLD's)
Relatively few CA security issues over 15 years...

- Certs issued worldwide: 2,000,000 per year
- Bad certs issued: maybe 1,000 over 11 years (~91 bad certs per year) – mostly single incident (DigiNotar)
 - Most breaches resulted in no tangible harm and were remediated quickly
- Accuracy ratio for certs issued each year: 99.995% (Error rate 0.005%) - US Passport Office and state Departments of Motor Vehicles are **NOT** this accurate
- Significant harm from bad certs? Only likely in DigiNotar case (actual harm unknown)
- The state of SSL is stronger today as result of industry responses
Networking Requirements

- Effective 1/12013 (CA/B) – New networking Requirements
 - Protection of networks and supporting systems
 Zoning, air gapping critical systems etc.
 - Implementation of trusted roles and system accounts
 - Vulnerability and patch management
 • Includes penetration testing
 - Logging, Monitoring and Alerting
Certificate Transparency (CT)

- Goal: Prevent misissued certificates by ensuring they are not issued without domain owner's knowledge.
- CT provides publicly published logs to audit issued certificates.
- Anyone can see what CAs are asserting about your organization.
Certificate Transparency

- Is based on existing technologies that are easily supported with industry coordination

- Internal CAs are not impacted: internal certificates do not need to be logged

- Internal hostnames in public certificates don't need to be logged - clients can be configured with a list of internal domains or intermediate CAs can be name constrained
Certificate Transparency

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enhances the current CA infrastructure rather than replacing it.</td>
<td>Requires all CAs to be updated.</td>
</tr>
<tr>
<td>Doesn't require any actions by sites in the vast majority of cases.</td>
<td>Deployment will take many years.</td>
</tr>
<tr>
<td></td>
<td>Public records require vigilance to be useful.</td>
</tr>
</tbody>
</table>
Certification Authority Authorization (CAA)
- IETF RFC 6844 drafted by Comodo
- Mechanism for preventing and detecting misissued certificates from CAs

Mechanism
- Based on DNS resource record that lists CAs authorized to issue certs for a domain
- PRIOR to issuing a certificate, CA checks for a CAA record to ensure CA is allowed to issue cert for that domain
Context and Key Points

- Benefit in that it’s a verification to see whether a CA should be associated with a cert for a specific domain
- This is a “preventative” approach to issuing rogue certs without replacing current system
- CAA record doesn’t say which key must be in the end-entity cert – entry is at the CA level
- Supports wildcard certs
- More than one CA may be specified for each DNS record
- CABF is starting discussions on CAA for potential usage by CAs
Certification Authority Authorization

Pros

- Good complement to existing ecosystem to prevent and detect mis-issuance from CAs
- Low barrier for deployment for CAs – CAs need to check CAA record
- Does not require big-bang adoption – can be phased per CA and per certificate customer
- Raises the bar on CA security – bad actor must be able to attack DNS or suppress CA’s CAA check
Certification Authority Authorization

Cons

- DNSSEC is recommended but not required, opening up potential for DNS record manipulation
- CA and customer opt-in nature makes CAA non-deterministic
- Potential perception of CAA being a mechanism for CAs to “lock in” customers
Public Key Pinning

- Client (browser) tracks what certs are used by a website
 - Can be preloaded into browser
 - Alternatively, Web server can make an assertion in the HTTP Header about what certificate(s) it must use
- Generate an alert or block the connection if a different cert is used
- Two current IETF drafts:
 - Trust Assertions for Certificate Keys
 - Public Key Pinning Extension for HTTP
Public Key Pinning

Pros

- Reduces attack surface for a given site from approx. 65 roots (and potentially hundreds of intermediates) down to 1-2
- Proven value in detecting compromise
 - Would've detected DigiNotar problems
- Enhances existing ecosystem
- Doesn't suffer from CAA's potential "lock in" perception
Cons

- Trust on First Use – doesn’t protect initial connection
- Doesn’t protect against key compromise
- Creates operational challenges with key exchanges
- May be best as a reporting mechanism
 - Long deployment horizon
 - Impact of false positives in "hard fail" mode
Where do these proposals go from here?
- Which proposals get adopted (CT, CAA, Pinning) – and in which form(s) – is yet to be decided and groups will continue good research

Incremental improvements will progress
- Continue to monitor emerging security threats
- Improving WHOIS – CA's must be informed of ownership changes
- Impact of gTLD MITM

SSL will improve. Systems that retain the improvements made by CA's as the knowledgeable trust anchors will advance internet security most effectively.
More research and multi-stakeholder collaboration is needed with ICANN community.

CA's are interested in improving the landscape and DigiCert is taking a lead role, especially with CT.

Many smart people are working on these issues, and the future looks good.
More Info

Resources
- CA/B - Baseline Requirements for the Issuance of Publicly Trusted Certs
- CA/B - Network and Certificate System Requirements
- CA/B - Letter to ICANN - Security Implications of New gTLD's
- Mozilla - CA Certificate Policy v2.1
- Microsoft - Root Certificate Program
- Online Trust Alliance - CA Best Practices
- CA Security Council
- WebTrust - Audit Criteria for CAs

Open Proposals
- Certificate Transparency Overview (CT)
- Certificate Transparency (CT) - rfc6962
- Certificate Authority Authorization (CAA) - rfc6844
- Public Key Pinning - IETF Draft