DNSSEC @ IANA

2007 ICANN Meeting Los Angeles
DNSSEC Workshop
Thanks to Many!!

• IANA's design is built on the trailblazing work by .SE. Without the generous help from Jakob Schlyter and others at .SE, I would still be lost.
• Thanks to nlnetlabs.nl, Olaf, and others for the INVALUABLE “DNSSEC HowTo” and RFC4641 (DNSSEC Operational Practices) documents...
• ...and to Steve Crocker's dnssec-deployment.org initiative and the President's IANA Consultation Committee for crucial guidance.
Design Goals

• Maintainability – if it’s not easy, it will fail
• Reliability – if there is a problem, no one will use it
• Security – it must look and be secure for people to trust it
• Target – arpa, in-addr.arpa, uri.arpa, urn.arpa, iris.arpa, ip6.arpa, int
“Figure 1”

KEYGEN

HSM

ZONEGEN

HIDDEN NAMESERVER

SECONDARY

ZONE DATA

ZONESIGNER

NS.IANA.ORG

SECONDARY

NORTH AMERICA

ZONE DATA

EUROPE (proposed)

KEYGEN

HSM

ZONEGEN

HIDDEN NAMESERVER

ZONE DATA

dnssec@iana
Figure 1 Details
Hardware (per site)

• 4x Dell 1RU 1950 commodity servers
• 1x AEP Keyper Pro (FIPS 140-2 Level 4) external Hardware Security Module (HSM)
• 1x KVM console
• Smart cards, Flash drive
• Locked rack within ICANN cage at secure colo facility
Maintainability - Only Two Scripts

- On ZONESIGNER – **signall**: automatically run daily on multiple machines to pickup zone changes (based on SOA serial, new DS records, or expiring signatures); reload hidden master; check key status; update status web page; and email notifications.

- On KEYGEN – **keyall**: manually run monthly (when notified by email). Generates new keys and signed key bundles for ZONESIGNERs as needed. Also backs up any new keys.
Maintainability – Overlapping Keys, Rollover Script

• Multiple overlapping keys (effectivity periods) to simplify rollovers.
• ZSK - three (3), old-active-new, overlapping ZSKs /w staggered effectivity periods. Use currently “active” key to sign records
• KSK - two (2) overlapping KSKs /w staggered effectivity periods. Use both to sign “key bundle” of five (5) keys
• Key generation and rollover automated in keyall

<table>
<thead>
<tr>
<th>keyindex file</th>
</tr>
</thead>
<tbody>
<tr>
<td>dn type alg tag publish date start date end date remove date</td>
</tr>
<tr>
<td>root KSK 005 64000 19750101000000 19750101000000 19761231235959 19761231235959</td>
</tr>
<tr>
<td>root KSK 005 24000 19760101000000 19760101000000 19771231235959 19771231235959</td>
</tr>
<tr>
<td>root ZSK 005 24001 19751201000000 19760101000000 19760215000000 19760229235959</td>
</tr>
<tr>
<td>root ZSK 005 08000 19760101000000 19760201000000 19760315000000 19760331235959</td>
</tr>
<tr>
<td>root ZSK 005 92000 19760201000000 19760301000000 19760415000000 19760430235959</td>
</tr>
</tbody>
</table>
Maintainability – Compromised Key, Replacement Script

- For bad ZSK (old, active, new keys)
 - old – replace key with newly generated “old” key.
 - active – use old key to sign and generate a replacement. Phase out bad key.
 - new – replace key with newly generated “new” key.
 - Normally done in one-step. Two-steps if “close” to a transition to account for DNS propagation delays.

- For bad KSK (2 keys)
 - One - replace key with newly generated KSK with the same effectivity period and immediately publish.
 - Both – generate two keys and phase out bad keys?

- Process semi-automated with badkey script
Reliability – Dual Signers

• Signatures on zone records are only valid for six (6) days to limit replay attacks. So an inability to sign for more than 6 days will result in DNSSEC validation to fail.

• Design: Two (2) commodity hardware based ZONESIGNERs periodically executing signall to make sure the zone gets signed by one of them.
Reliability - Key Backup

• Must backup even private keys to recover from catastrophe

• Encrypt and propagate new private key material as key operations generate them

• Built into regular key operations script `keyall`
Security – KSK/ZSK Split

• Following .SE’s lead, sensitive KSK operations are kept separate from routine ZSK signing operations by only exporting pre-signed public key bundles and a single private ZSK from KEYGEN to ZONESIGNERs.

• KEYGEN machine is connected to ZONESIGNERs only during key generation and transfer operations
Security – HSM

- To protect against internal as well as external attacks, KSK operations (generation, signing, backup) for critical zones are performed inside the HSM.
- Do this using modified BIND tools with native PKCS11 support
- To minimize HSM operational overhead, child zones falling under .arpa will not use the HSM for KSK operations. Recovery from child zone KSK compromise can be effected quickly
Security – Key Lifetimes

- New ZSK 1024 bit every month to frustrate key guessing
- New KSK 2048 bit every year to frustrate key guessing
- Two KSKs always valid to support orderly replacement of old or compromised KSK
- Three published ZSKs to support orderly replacement and promotion of old or compromised ZSK
- 6 day (short) ZSK signature validity period to limit replay attacks while providing some time to recover from severe signing equipment failure
- 1.5 month key bundle KSK signature validity period to constrain compromised ZSK effects while not requiring daily manual resigning with KSK
Security – Key Backup

- Keys generated inside HSM (KSKs) are encrypted inside HSM before export
- Unencrypted key material (e.g. ZSK), key index, encrypted HSM keys (above), HSM configuration, and any other updated material on KEYGEN’s hard drive is further encrypted using internal HSM key before transmission/backup
- Only another HSM with the same internal HSM key can decrypt this material
- Internal HSM key backed up on N of M smartcards
Security - Meatspace

• Key generation operation requires:
 ● Access to DNSSEC equipment at a secured colo facility
 ● One Security Officer smartcard and PIN to enable the HSM
 ● HSM User PIN to generate keys and sign the key bundle
• A minimum of two (2) authorized personnel, controlling different components above, must be present for the entire key generation operation.
• Every access to DNSSEC equipment is logged in a DNSSEC log book
• `keyall` propagates its activities to the DNSSEC Administrator via email
• Material used to (re)build KEYGEN and HSM contents will be stored in safety deposit boxes. Each box will contain one of the required 2 out of 4 HSM master key smartcards along with an encrypted backup of current KSKs and miscellaneous configuration files needed for rebuilding
Software

All software and modifications will be available as open source

KEYGEN
• keyall, kgen, badkey, and support programs
• pkcs11-backup, pkcs11-changepin, pkcs11-encrypt, pkcs11-random
• pkcs11 modified BIND tools: dnssec-signzone and dnssec-keygen

ZONESIGNER
• signall, zsign, and support programs

ZONEGEN
• upsite – DNSSEC status web page generator
System status and publication of PGP signed trust anchors only on SSL secured site.

Domains: root, arpa, in-addr.arpa, uri.arpa, urn.arpa, iris.arpa, ip6.arpa, int
DS Record Handling

- Integrate into IANA root zone management?

- https://ns.iana.org/dnssec/ds/queryds.cgi
Questions I have

• How’s it look?
• Compromised key recovery in the face of disinterested users. Update vectors:
 – Windows update, anti-virus software updates, RFC5011/Revoke bit St. Johns,..?
• How to detect compromised keys?
• Other DS record acceptance/derivation mechanisms?
• Other suggestions?