Network Infrastructure for Critical DNS

Steve Gibbard
http://www.stevegibbward.com
scg@stevegibbward.com
Introduction

- No research here; just a how to.
 - This was intended as a ccNSO TECH Day talk, not an OARC one.
- DNS network architecture
 - Whose network infrastructure to use
 - Where and how should name servers be connected?
- Focusing on network infrastructure
 - Lots of important stuff happens on the servers too, but that’s not my area.
DNS is critical infrastructure

- Without DNS, nothing else works.
- Authoritative DNS needs to be as reliable as the most reliable parts of the network.
- DNS is a hierarchy. For a domain name to work, its servers and those for all zones above it must be reachable.
Reliability is best close to authoritative servers

- There’s less to break between the server and the user.
- Response times are faster.
ccTLDs are location-based

- It’s somewhat obvious where they should be reliable.
 - They’re depended on by users in their countries.
 - They may be used in neighboring/trading partner countries.
 - People outside may not care much.
- Local root servers are needed too.
Network partitions

- In a network partition, it’s good if local communications keep working.
 - In satellite-connected regions, international connectivity breaks frequently.
 - Outages are rarer in fiber-connected regions, but last longer.
 - Local phone calls work without international connectivity. Local Internet should too.
Notable incidents

- **Sri Lanka (2004)**
 - International fiber was cut in Colombo harbor.
 - Press reports described an outage of “Internet and long distance phone service.”
 - ccTLD hosted locally, but no root server (now fixed).

- **Burma/Myanmar (2007)**
 - International connectivity was cut off by the government.
 - Local connectivity kept working.
 - .MM worked inside but not outside.
Root Server Locations

Source: http://www.root-servers.org
Building DNS infrastructure

- Goals
- How to build it
- Topology
- Redundancy
Goals

- Who are you trying to serve?
 - Local users?
 - Users in other local areas?
 - The rest of the Internet?

- Your region’s topology:
 - Is everything well-connected, or a bunch of “islands?”
 - Servers in central location, or lots of places?
Whose infrastructure?

- Your own?
- Somebody else's?
 - Free global anycast services for ccTLDs provided by ISC, PCH, others
 - Several commercial anycast operators (now including Nominum…)
 - Lots of free unicast options
 - Mixing these for an easy large-scale global-build
- Mixture?
 - Your own servers in areas that matter most to you
 - Somebody else's global footprint
Where to put the servers

- In country options:
 - At a central location -- an exchange point
 - One in each ISP
 - At a common uplink location (like Miami for Latin America)

- In the rest of the world:
 - At major Internet hubs
 - At the other end of your ISPs’ international links
Unicast/anycast:

- This is mostly an issue of scale
- For small numbers of servers, unicast works well
- Having several service IP addresses *in different places* is good for reliability
- Anycast is required for larger numbers of servers
Unicast configuration

- Fairly trivial, from a network perspective
 - Plug your host or hosts into a network connection, and it will work
- Do make sure you have enough capacity
- Make sure you have network and power diversity between servers
- Use colocation providers close to your users
Anycast topology – keeping traffic local

- Backbone engineers are often good at keeping local traffic local.
- Anycast DNS operators aren’t so good at this.
 - Anycast looks like a backbone.
 - But, plugging servers into random networks is done in pursuit of network diversity.
 - Networks send traffic to customers first, regardless of geography.
There are four local J-Root servers in the Bay Area (www.root-servers.org)

Queries from 4Bay Area hosts are responded to by:

- jluepe1-elsel1 – Seoul, via Level(3)
- jluepe2-elbom1 – Mumbai, via GBLX
- jluepe1-eltpe1 – Taipei, via Asia Netcom peering
- jns4-sea1 – ICANN meeting network / NTT
Anycast can keep traffic local

- Consistent transit should be gotten from global ISPs
- Peering only locations work in areas where global transit isn’t available, but be careful
- No transit from non-global providers:
 - Insist on being treated like a peer
Routing Topology
Queries with consistent transit

Palo Alto

Ashburn

London

Hong Kong
Routing protocols - External

- Upstream peering via BGP
 - Single Global AS helps keep things consistent
 - Don’t propagate anycast routes between sites
 - Be careful about BGP attributes (e.g. MEDs), especially in a multi-vendor environment.
Routing protocols - internal

- Internal: BGP or your favorite IGP.
 - Internal routing scope should be limited and
 - Routes can be originated on servers for dynamic withdrawal. Use Quagga or BIRD
 - OSPF has wider support; BGP has better filtering
 - Dedicated load balancers are an option
 - If mixing, be careful about routing attributes
Redundancy

- More servers are better than fewer, if they’re manageable.
- There’s no contradiction between using your own servers and outsourcing.
- Monitoring:
 - Check zone serial numbers on all servers frequently.
 - If using anycast, monitor individual unicast management addresses.
 - Check response times from multiple locations.
Anycast Requirements

- Servers running Quagga (or BIRD)
- BGP capable routers
- IP transit from consistent providers in all sites
- Colocation space in all sites
- A /24 of address space per site, if using multiple transit providers
What should it look like when done?

np.	86400 IN NS	ns-ext.isc.org.
np.	86400 IN NS	ns-ext.vix.com.
np.	86400 IN NS	sec1.apnic.net.
np.	86400 IN NS	shikhar.mos.com.np.
np.	86400 IN NS	yarrina.connect.com.au.
np.	86400 IN NS	np-ns.npix.net.np.
np.	86400 IN NS	np-ns.ripe.net.
np.	86400 IN NS	np-ns.anycast.pch.net.
np.	86400 IN NS	sec3.apnic.net.
Further reading
Very old papers

- DNS infrastructure distribution

- Observations on anycast topology and performance.
Thanks!

Steve Gibbard
http://www.stevegibbard.com
scg@stevegibbard.com