Versign DNSSEC Update

Matt Larson, Vice President, DNS Research

ICANN 40 DNSSEC Workshop
16 March 2011
DNSSEC at Verisign: Timeline

• **.edu**
 • Zone signed and DS record published in the root zone on **July 29, 2010**
 • (Verisign operates the registry for .edu under contract with EDUCAUSE.)

• **.net**
 • Zone signed and DS record published in the root zone on **December 9, 2010**

• **.com**
 • Signed now!
 • But unvalidatable (more on that in a moment)
 • On target for DS publication in the root on **March 31, 2011**
Challenges for DNSSEC in `.com/.net/.edu`

- Sign and maintain a zone that is continually being updated
 - Tight service level agreements (SLAs) on interactions with ICANN-accredited registrars and DNS zone updates
- Safeguard cryptographic materials
- DNSSEC impact on resolution
 - Performance
 - Networking issues (fragmentation)
- Ensure valid DNSSEC responses
DNSSEC Provisioning: Architecture
DNSSEC Provisioning: New Features

• Changes to registrar interface
 • Extensible Provisioning Protocol (EPP)
 • Extended to allow DS records to be passed (RFC 5910)

• Sign changed zone data during EPP transaction

• Zone maintenance
 • Re-signing (signature refresh)
 • SOA serial number maintenance
 • Key rollover
 • KSK and ZSK
DNSSEC Provisioning: Signing and Key Mgmt

• **Signing Service**
 - Abstracts multiple HSMs (Hardware Security Module)
 - Custom signing server software, high availability (HA)

• **Key-signing Key (KSK) management**
 - Cryptographic Business Operations (CBO) group
 - Handles key material
 - “Key Signing Request” (KSR)
 - Using technique and format from root signing project
 - Communicates zone-signing keys (ZSKs) to be signed
 - Concept similar to Certificate Signing Request (CSR) in X.509
 - Response is “Signed Key Response” (SKR) containing signatures made with KSK
DNSSEC Provisioning: Need for a Signing Server

• Not practical to have an HSM for every app needing signing
 • Main servers, batch processes, admin tools, etc.
 • No HA/failover
• Need signing servers
• Benefits
 • Lower costs
 • Operational simplicity (keys, HSM management, number of components, etc.)
• Costs
 • Increased signing durations (network hops)
 • Development effort
DNSSEC Provision: HSM HA Failover
DNSSEC Provisioning: Key Management

- Collaboration with Cryptographic Business Operations (CBO) function
 - Specialize in HSMs and key management
 - Processes for security and auditing
- Provisioning of key-signing and zone-signing keys (KSKs, ZSKs)
 - KSKs kept offline
 - ZSKs loaded into HSMs and sent to provisioning data centers
- CBO pre-signs zone-apex DNSKEY data
 - Aforementioned KSR and SKR exchange
DNSSEC Parameters for .com / .net / .edu

• 2048-bit KSK
 • Lifetime of years
 • No specific plans to roll
 • Will not use RFC 5011 rollover signaling protocol

• 1024-bit ZSK
 • Rolled every three months

• Signature durations
 • DNSKEY set (made with KSK): 7 days (2-day overlap)
 • All other zone data: 7 days (4-day overlap)

• RSA/SHA-256

• NSEC3 and Opt-Out
 • For reduced zone size, not confidentiality
DNSSEC Resolution: Architecture
DNSSEC Resolution: DNSSEC validation

• Must never publish data that does not validate
 • Bad data looks like attack!
 • .com/.net/.edu can never be wrong
 • Solution: Do semantic check in addition to existing integrity checks

• Methodology
 • Verify all signatures
 • Check for NSEC3s for all published DS RRs
 • Check NSEC3 chain
 • Etc.
DNSSEC Resolution: Network

- **Fragmentation:**
 - DNSSEC responses are “large”
 - DNS works much better over UDP
 - Large UDP responses may fragment
 - Current load balancer configurations don’t work with UDP fragments

- **Fragmentation solutions:**
 - Direct Server Return (DSR)
 - Scaling issues (ironically)
 - Operational concerns
 - Just Don’t Fragment
 - Truncate DNS responses that would fragment
 - May increase DNS TCP traffic

- **Chosen solution:**
 - Just Don’t Fragment
 - DNS responses kept below Ethernet 1500-byte MTU by truncation and “truncation”
DNSSEC Deployment Approach

- Cautious and deliberate approach overall
- Deliberately unvalidatable zone
 - First used for root zone (DURZ)
 - Obscured key material to prevent validation
 - Still tests larger responses sizes and presence of DNSSEC metadata in responses

```
com. IN DNSKEY 257 3 8 (AwEAAa9Lp+THIS/IS/AN/INVALID/KEY/AND/SHOULD/NOT/BE/USED/CONTACT/INFO/AT/VERISIGN+GRS/DOT/COM+) ; key id = 30909
```
DNSSEC Deployment for .com / .net / .edu

• Resolution deployment steps (high level):
 • Slow rollout of DNSSEC-capable name server code to all resolution sites
 • Publish deliberately unvalidatable zone
 • Gradual rollout of signed zone, one site at a time
 • “Unblinding” of unvalidatable zone, one site at a time
 • DS records added to root zone

• Provisioning interface deployment steps (high level):
 • Operational Test & Evaluation (OT&E) environment for registrars
 • EPP DNSSEC extensions enabled in live registrar interface

• Always allow time at each step for “baking” and issues to be discovered or reported
Issues Encountered During Deployment

• .edu zone
 • None reported

• .net zone
 • Bug in BIND 9.6.x and 9.7.0 affects DNSSEC validation when used as recursive name server
 • Resolution failures after DS for .net added to root zone
 • Name servers required restart
 • Have reported issue to BIND developers
 • Have publicized before .com signing
 • Apparent low impact (one report)
Lessons Learned

• The Internet didn’t break

• Incremental deployment is possible (DURZ)
• Registrar test environment (with resolvable signed zone) helpful for every party (.edu)
• Monitoring is critical, especially surrounding key rollovers
• Issues with hardware and software installed base possible
 • BIND validation bug
 • Much hardware remains non-DNSSEC-capable
 • http://verisigninc.com/assets/DataSheet-Verisign-InteropLab.pdf
Best Practices

- Deliberately unvalidatable zone and slow rollout
- Strict key management practices
- Online ZSK / offline KSK (for expediency)
- Publish DNSSEC Practice Statement (DPS)
- Validate signed data before publishing
Work with ICANN-accredited Registrars

- Software Development Kit (SDK)
- Operational Test & Evaluation (OT&E) “sandbox” environment
- DNSSEC Resource Center
- Tools guide
- Signing service
Thank You