DNSSEC Deployment Status

• We began working on this in 2008 (see timeline)
• We completed our DNSSEC deployment in January 2012
 • All customers use our validating resolvers (>18.5M homes)
 • All Comcast domain names signed (>6,000)
Some Measurement Data – January 2012

Domains with DS Records

General timeframe when we signed over 5,000 domains

Some Measurement Data – September 2012

Source: Verisign http://scoreboard.verisignlabs.com/count-trace.png

Recent Additions :-)
Validation and Customer Perceptions
There is still much work needed to make validation for name resolution stable

- There have been several high profile sites in the .GOV TLD that have had operational issues reported recently.
 - See http://dns.comcast.net

- Many of which immediately cause people to claim that we are blocking access to services. We do not blocking access to sites and services.

- Customers are overtly aware when a site stops working...
 - Twitter, Facebook, Blogs are the new way of alerting that a website is down. Social media is the new alerting mechanism.

- How do we help customers identify when there is a site down due to DNSSEC validation?
 - Either because of error or maliciousness.
 - Should this be done in web browsers and applications?
Validation and Customer Perceptions

• In the end, customers are not going to have patience trying to decipher a DNS problem, DNSSEC signing problem, or just that they cannot get to a site due to any number of problems
 • We need better tools and alerting mechanisms for zone operators to know their zone is not operating.
 • There needs to be better coordination across all zone operators.
 • Could we use organizations like DNS-OARC or something else to help coordinate and provide tools for zone operators to assist with signing validation and operational deployment?
Lessons Learned in Testing & Early Deployment

• Is a software upgrade required?

• Can the servers handle incremental CPU load?

• Network equipment may need to be updated
 • Will they permit both UDP and TCP traffic on port 53?
 • Can they properly handle larger DNS responses? (with EDNS0, response may go from 512 bytes to 4,000 bytes)
 • Can they handle fragmentation?

• Authoritative infrastructure may need to be augmented to support signing your zones
 • Zone signing can be resource intensive.
 • This can be complex if you have many sub-zones.
 • Delegations to platforms like GLSB and CDN which are not yet supporting DNSSEC signing will stop validation and in some cases break.
Lessons Learned in Testing & Early Deployment

- Best way to figure this out is to test in the lab and validate with production traffic under close observation and measurement.

- If you plan this at the same time as your IPv6 upgrade, they incremental cost and work is more modest than it otherwise would be.

- Look for operational processes that may need to be adjusted to support DNSSEC validation. (i.e. troubleshooting, customer FAQs)

- Add new Key Performance Indicators (KPIs) or metrics, such as:
 - # of SERVFAILs. (set an alarm threshold)
 - SERVFAILs as a % of all RCODEs. (set an alarm threshold)
 - When top-10 domains sign, ad hoc temporary monitors?

- For signing your zones, be sure your registrar has an automated process for updating / inserting DS records.
Recent Lessons Learned at Scale

• On our authoritative servers, not many DNSSEC-related RR queries as of yet. (expected based on the state of validation)

• Of the top 2,000 domains:
 • 1.75% signed – which is oddly close to the % with AAAA RRs.

• As with any new technology or deployment there will be problems
 • Prepare in advance. (scripts, processes, testing, practice)

• Most common issue is incorrectly signed zones, usually related to key rollovers.
More Recent Lessons Learned at Scale

• One solution is a “Negative Trust Anchor” to temporarily skip validation for a given domain
 • Only when an engineer has personally verified the failure is due to DNSSEC misconfiguration and, preferably, communicated with the affected domain.
 • Can temporarily restore end user access while the domain fixes their problem.
 • Does NOT scale, but can be helpful for high traffic and other key domains.
 • Probably useful for the next 1 – 2 years as domains mature and master their signing and key rollover processes.
 • Ultimately, this is the responsibility of the domain owner or administrator to get right!
Increasing Adoption
There is still much work needed to make validation for name resolution stable

• More ISPs should move towards enabling DNSSEC validation on their resolvers in their network. They should also sign domains if they manage their authoritative zones.
 • Get started as soon as possible, there is a lot of planning needed to do it right.
 • Setting up a test bed and/or beta program is fairly low impact and will provide time to work through planning for eventual roll out.
 • Securing DNS answers is a value add for your customers.

• Enterprises should also look to trial DNSSEC validation in their network.
 • Setup for DNSSEC validation has become much easier with applications and tools.
 • Enterprises need security for the DNS as well.
Next Steps

• Managing customer escalations VS zone operator issues and how to we get in front of this problem

• We need to solve the current problems for DNS Global Load Balancing (GSLB) and Content Distribution Networks (CDN)
 • We are evaluating solutions now, but suggestions are welcome.
 • Multiple points points of presence for the same authoritative signed answers.

• Commercial Services
 • We have many commercial services customers who we would like to offer services like signed domains.
 • Legacy platforms that need to be upgraded to support signing.
 • Solve the DS key upload to many registrar problem.
Thank You!

For more information on the Comcast DNSSEC and IPv6 deployments:

http://dns.comcast.net
http://www.comcast6.net