OS integrating of DNSSEC

Paul Wouters
Senior software engineer,
Red Hat
October 17, 2012
Red Hat Development Model

- Community driven – foster relationships with upstream
- Fedora Linux - Freedom, Friends, Features, First
 - Innovation mayhem (i.e. glibc, systemd, selinux)
- Red Hat Enterprise Linux
 - Enterprise quality product
 - Strong security – Common Criteria, FIPS-140
 - Long term support
- DNSSEC fits in this model
 - Deploy in Fedora first
 - Carefully merge into RHEL later
The basis: Fedora and EPEL packages

- Multitude of DNSSEC packages
 - resolvers: bind, unbound, libval
 - authoritative: bind, nsd, pdns
 - signers: bind, opendnssec
 - tools: validns, dnssec-tools, dnssec-check, dnssec-system-tray, mozilla-extval, dnssec-nodes
 - dnssec-trigger
 - hash-slinger (formerly sshfp, now with tlsa support)
 - openswan with dnssec support
- All the tools are there to build signers, resolvers, validators
Fedora infrastructure

- First to enable DNSSEC (and DLV) per default when installing a resolving name server
- First to ship DNSSEC keys before a signed root using dnssec-conf (discovered “rollover-or-die” bug in bind)
- fedoraproject.org first signed Oct 3 2009 (DLV, no DS)
- Publishes TLSA records for fedoraproject.org

- Hotspot detection and login page at:
 http://fedoraproject.org/static/hotspot.txt
 http://hotspot-nocache.fedoraproject.org/
- Runs open DNS resolvers on TCP (port 80 and 443)
DNSSEC experience: #1 Captive Portals

- dnssec-trigger + unbound = okay (but not great)
 - Try cache, then full resolver, then TCP 80, then TLS
- Need better integration with Network-Manager
- Monitor and act on Web and DNS hijacking together
- dnssec-trigger needs to reconfigure unbound for more aggressive retries, shorter negative caching
- unbound needs support for querying DNSSEC chains
 - 1 query per HTTP/TLS connection does not work

- Excellent co-operation with NLnetlabs
DNSSEC experience: #2 VPN using Openswan

- Openswan reconfigures unbound
 - IPsec XAUTH parameters received contain domain name (“redhat.com”) and nameservers (“1.2.3.4”)
 - When the VPN is established it runs unbound-control to configure forwarder, flush cache for “redhat.com” and flush request list.
 - When VPN disconnects it runs unbound-control to remove forwarder, flush cache for “redhat.com” and request list.
 - Works very well, except when VPN silently times out (happens when using OTK, i.e. SecureID)
- Openswan patch: use libunbound not gethostbyname()
DNSSEC experience: #3 Split DNS

- Simple split DNS (eg VPN) works
- More complicated when external and internal zones are signed – “DNS lying” is required due to DNSSEC
 - Running your own resolver means using public view
 - internal.redhat.com does not exist in public view
- Patched unbound to support distributing trust anchors (i.e. via puppet)
 - /etc/unbound/keys.d/internal.redhat.com.key
 - /etc/unbound/conf.d/internal.redhat.com.conf
 - /etc/unbound/local.d/nasa-override.conf
- We need more experience with complicated DNS splits
TLSA Validator for Firefox

Congratulations! If you can see this then it means your browser successfully validated the X.509 certificate for good.dane.verisignlabs.com using DNSSEC.

If you did, on the lock icon in the location bar, you should see this:
Generating TLSA and SSHFP records is easy

- `yum install hash-slinger`
- `tlsa --create www.example.com`
- `sshfp -a (known_hosts)`
- `sshfp -a -d -d nohats.ca -n ns0.nohats.ca (axfr+scan)`
DNSSEC: RHEL integration

- Wait on more experience and stability with Fedora
- As a server OS, captive portal not as important, but RHEL as desktop gaining traction and under increased security demands
- Only allowed crypto libraries: NSS, openssl, libgcrypt
 - libunbound can now use NSS instead of openssl
 - The unbound daemon still requires openssl
 - OpenDNSSEC uses botan which is not certified

- Running in FIPS mode still causing problems
 - MD5 not available (unbound, nsd,...)
DNSSEC: TODO list

- Support in Anaconda / NetworkManager to run validating resolver on every install (for Fedora 19?)
 - resolv.conf with only 127.0.0.1 makes everyone happy!
- Integration of dnssec-trigger and NetworkManager
- DNSSEC chain support for TCP queries (IETF work)
- Single storage of root and DLV keys
 - applications cannot yet be guaranteed a local resolver
 - Multiple formats, multiple locations
- Long term handling of shipping DNSSEC keys, especially the root key. Grab RHEL7 from a shelve in 2020 and turn it on, will DNS still work?
Questions?
Find the guy with the red hat after the panel discussion