DNS Anycast Operation of .JP

ICANN ccNSO @ Vancouver
30 Nov. 2005
Shinta Sato <shinta @ jprs.co.jp>
JPRS
Agenda

• Background
• Motivations
• .JP Anycast Overview
• Anycast management
Background

- IP anycast is...
 - A technology to share a single IP address in multiple servers
 - IGP anycast for inside AS
 - BGP anycast for outside AS
 - DNS service is one of the effective thing to introduce IP anycast
 - 1 packet udp transaction for both query and response
 (Response packet may fragment in EDNS0, but still no problem)
 - very short tcp session
 - IP anycast technology is now being deployed in authoritative name servers
 - Root servers (C, F, I, J, K, M)
 - Some TLD servers (.JP, .MX, .DE etc.)
BGP Anycast Overview

Incoming query packets from clients in AS5 will go to the nearest node #1 of AS1 via AS2.

Incoming query packets from clients in AS6 will go to the nearest node #2 of AS1 via AS3.

Both routers announce the same shared unicast IP address by BGP connection for a service address.
IGP Anycast Overview

A shared unicast IP address is assigned for the service, and is announced by the IGP.

Anycast node #1

AS 1

AS 2

AS 3

Incoming query packets from the clients will go to the nearest node after it gets in AS1.

A shared unicast IP address is assigned for the service, and is announced by the IGP.

AS 4

AS 5
Motivations

• Common motivations for using DNS anycast are,
 – Localize the DoS attack damages
 – Provide nameservers all over the world
 – IPv6 deployment
 – Simple maintenance and recovery
Localize the DoS attack damages

- IP Anycast can localize the DoS attack damages to the single node.
 - Other nodes will not be affected from the DoS attack
 - Only the nearest nodes from the DoS attacker will be damaged
 - In the DDoS case, if the attackers are gathering in the similar network, affects will be localized too.
Provide nameservers all over the world

• Placing more nameservers is one of the solutions to increase the stability of the DNS
• IP anycast can help to plan the placement of secondary servers
 – Adding a new anycast node improves the accessibility of the users
 – Users access only the nearest node
IPv6 deployment

• Adding IPv6 glue data in the higher level zone decrease the limit number of NS in less than 13
 – Number of NS is limited by the DNS response packet size of 512 octets
 – Serving AAAA (IPv6) information in the glue record require more data size in the additional section than A (IPv4) only
Simple maintenance and recovery

• IGP anycast can simplify server maintenance
 – Operator can stop individual server without outage of the service

• BGP anycast can simplify maintenance of the whole site
 – Operator can shutdown the BGP peer without outage of the service
 – Useful in the case of network troubles

• Able to rebuild the DNS node without thinking of other infrastructures placed in the same network
The current situation of .JP

- **JP DNS servers:**
 - 5 NSes
 - \{a,b,d,e,f\}.dns.jp
 - c.dns.jphas retired in Mar. 2005
 - Operated by 5 different organizations, with responsibility of JPRS
 - All organizations own their networks by their own AS numbers
 - Hold numbers of zones
 - .JP ccTLD zones (1 TLD and 63 SLDs)
 - 769,445 domains (1 Nov. 2005)
 - Also serve 339 of in-addr.arpa zones for JPNIC (NIR)
Introducing IP anycast servers to .JP

• Severe crisis of the power outage in Tokyo (2003)
 – JP DNS operators tried to move some of the servers out of Tokyo
 • Using IP address of their main network prevent us to change the location without changing the IP address at that time
 • This was the potential problem, which prevent us to recover the DNS without thinking of other infrastructures placed in the same network, even in the severe network trouble
 – JP DNS could not add more NSes
 • JP DNS operators were thinking of the deployment of IPv6 at that time
 • 4 IPv6 servers out of 6 NSes is the limit

Fortunately, the power outage did not happen
Introducing IP anycast servers to .JP (2)

• JP DNS took the following solution
 – Keep the number of NS in 6
 – Move to PI (Provider Independent) addresses and new ASNs if possible
 – Add more servers using IP anycast technology
 • Now we have servers in Tokyo, Osaka and US
Technical details of a.dns.jp
Concerns of IP Anycast management

- **IP address issues**
 - Anycast need PI address or unused /24 address block
 - ccTLD can have PI address blocks for their nameservers
 - Unicast address still needed for each anycast nodes
 - To update the zone data, to maintain the servers
 - At least 1 NS should remain in unicast (RFC 3258)

- **Budget issues**
 - IP anycast requires transit and / or IX connectivities for each nodes
 - Maybe expensive for individual service
 - This network serves only 1 IP address to the public

- **Measurement issues**
 - It is hard to know all the servers are up in anycast address
 - Checking unicast address is not enough
 - Multiple measuring address required
Nameserver configurations

• Multiple addresses are needed in a server
 – One for IP anycast service
 – One (or more) unicast address(es) for maintenance and zone update

• Not so much difference from unicast servers
 – in BIND9, following options should be considered to make zone updates to work
 • query-source
 • transfer-source
 • notify-source
Consideration points

• Local nodes and global nodes
 – Local nodes are for IX connections
 • No-export option in BGP peers
 – Global nodes are for transit connections
 – 2 global nodes and several local nodes may be good
 – Some trouble may occur by uRPF (unicast Reverse Path Forwarding)
 • Some ISPs use uRPF technology for very intelligent network filtering
Example of IP Anycast effect

- DoS like queries in Osaka node did not harm any in Tokyo node

Osaka node

Tokyo node
BCPs

- Some BCP activities exist
 - Distributing Authoritative Name Servers via Shared Unicast Addresses
 - RFC 3258
 - Operations of Anycast Services
 - draft-ietf-grow-anycast-02.txt
 - BGP Anycast Node for Authoritative Name Server Requirements
 - draft-morishita-dnsop-anycast-node-requirements-01.txt
Appendix: NS maximum number estimation

- DNS protocol has limitation in UDP response packet size
- More NSs make .JP DNS more reliable
 - Name compression
- Estimation for .JP (dns.jp)
- “preferred-glue a” and / or EDNS0 may moderate the limitation

<table>
<thead>
<tr>
<th>NS</th>
<th>AAAA</th>
<th>A</th>
<th>Add.</th>
<th>Judge</th>
<th>NS</th>
<th>AAAA</th>
<th>A</th>
<th>Addi.</th>
<th>Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>AAAA x3, A x3</td>
<td>Nice</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>AAAA x4, A x3</td>
<td>OK</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>AAAA x3, A x4</td>
<td>Nice</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>AAAA x4, A x2</td>
<td>OK</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>5</td>
<td>AAAA x3, A x4</td>
<td>OK</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>AAAA x4, A x1</td>
<td>OK</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>6</td>
<td>AAAA x3, A x3</td>
<td>OK</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>AAAA <4, A x0</td>
<td>NG</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>7</td>
<td>AAAA x3, A x2</td>
<td>OK</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>AAAA x5, A x1</td>
<td>OK</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>8</td>
<td>AAAA x3, A x1</td>
<td>OK</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>AAAA x5, A x0</td>
<td>Bad</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>9</td>
<td>AAAA x3, A x0</td>
<td>Bad</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>AAAA <5, A x0</td>
<td>NG</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>10</td>
<td>AAAA <3, A x0</td>
<td>NG</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>AAAA <6, A x0</td>
<td>NG</td>
</tr>
</tbody>
</table>
Questions?

http://jprs.jp/

http://日本レジストリサービス.jp/