

Packeteer Technical White Paper Series

Response-Time Technology

May 2002

Packeteer, Inc.
10495 N. De Anza Blvd.
Cupertino, CA 95014
408.873.4400
info@packeteer.com
www.packeteer.com

Company and product names are trademarks or registered trademarks of their respective companies. Copyright 2002 Packeteer, Inc.
All rights reserved. No part of this publication may be reproduced, photocopied, stored on a retrieval system, transmitted, or

translated into another language without the express written consent of Packeteer, Inc.

 Technical White Paper Series 1

Table of Contents
Response-Time Technology ..3

RTM Features ..3

PacketShaper’s Response-Time Advantages...3

Response-Time Metrics and Descriptions ...4

Synthetic Transactions ..6

Working in a Variety of Topologies ...6

Calculating Delays ...7

Determining the Server Delay ..8

Determining the Total Delay ..8

 Technical White Paper Series 2

Response-Time Technology
PacketShaper’s response-time management (RTM) facility quantifies what has traditionally been
subjective, anecdotal information. RTM tries to measure the user experience.

PacketShaper’s position in the network — monitoring all the traffic that passes — gives it a unique
opportunity to provide accurate response-time measurements at a very low cost. Because it already
sees every packet, PacketShaper can easily calculate the time traffic spends traveling between a
client and a server, the time used by the server itself, and the time spent on either side of
PacketShaper itself. Rather than gathering or collecting response data, PacketShaper notes response
times as traffic passes. This simple approach provides rich data without network impact or
overhead.

This white paper summarizes RTM features and then delves into technical detail about how
PacketShaper calculates response-time measurements.

RTM Features
PacketShaper RTM offers the following features:

• Tracks delay statistics for any TCP-based traffic class. For example, you can measure response
times for applications such as Oracle, SAP, Citrix-based PeopleSoft, one or more applications
using an MPLS path, the traffic to or from individual hosts, subnets, particular web pages of
your choice, and much more.

• Breaks each response-time measurement into network delay (time spent in transit) and server
delay (time the server used to process a request). Several other response-time metrics are also
available and are detailed later.

• Identifies the users and servers with the slowest performance, called Worst Clients and Worst
Servers.

• Sets acceptability standards and tracks whether performance adheres to the standards. You can
set the speed that divides good response from bad (e.g. 900 ms), and you can set the percentage
of transactions that should be within your performance goal (95 percent, for example).

• Offers current and historical performance data in tables, graphs, in a MIB (management
information base), via an API (application programming interface), or as raw data.

PacketShaper’s Response-Time Advantages
PacketShaper’s strengths in the response-time arena are based significantly on what it does not do
and from the problems it does not impose. PacketShaper avoids common pitfalls, including:

• Application modifications

PacketShaper does not require software wrappers around measured applications or the addition
of API calls.

 Technical White Paper Series 3

• Desktop and server changes

PacketShaper does not need anything loaded on client desktops or any server.

• Artificial traffic overhead

PacketShaper does not create extraneous application requests merely to time their responses,
and PacketShaper does not issue pings. It can issue synthetic transactions if requested, but
calculates all response-time metrics without resorting to artificial traffic.

• Router reconfiguration or topology changes

PacketShaper requires no changes to router configuration, protocols, servers, desktops, or
topology.

• Location restrictions

PacketShaper measures performance anywhere on the network, as long as it sees the traffic it is
measuring. It can sit on the client side or on the server side of the topology. If the Internet
separates the client and server, it does not matter on which side PacketShaper is deployed.

• Data collection overhead

PacketShaper does not load the network with constant statistics downloads.

Response-Time Metrics and Descriptions
PacketShaper offers a variety of response-time metrics. By using the metrics appropriately, you can
baseline performance, spot performance problems, and identify their location. In addition, you can
enter response-time commitments in PacketShaper, then measure compliance and request
notification if compliance is not up to par.

Total Delay

The number of milliseconds beginning with a client’s request and ending upon receipt of the
response. This is what most people mean when they say “response time,” corresponding to the end
user’s view of the time it takes for response after initiating some action.

Network Delay

The number of milliseconds
spent in transit when a client and
server exchange data. If a
transaction requires a large
quantity of data to be
transferred, it is divided and sent
in multiple packets. Network
delay includes the transit time
for all packets involved in a
request-response transaction.
The amount of time the server
uses for processing a request is not included.

 Technical White Paper Series 4

Server Delay

The number of milliseconds the server uses to process a client's request after it receives all required
data. The server delay is the time after the server receives the last request packet and before it sends
the first packet of response (not the receipt acknowledgement, but actual content). This is the time
the server takes to process the client's request.

Normalized Network Delay

The number of milliseconds per kilobyte spent in transit when a client and server exchange data. If
a transaction requires a large quantity of data to be transferred, it is divided and sent in multiple
packets. Because network delay increases as transaction size increases, it can be misleading when
comparing times. Normalized
network delay eliminates size as
a factor so that comparisons are
more reasonable.

Round Trip Time (RTT)

Description: The number of
milliseconds spent in transit
when a client and server
exchange one small packet. Even
if a transaction’s data is split into
multiple packets, RTT includes
only one round trip of a single packet between client and server.

The Good and the Bad

Although delay statistics are useful, it’s even better to have a thumbs-up or thumbs-down
performance indicator. After all, what does a metric like 600 milliseconds really mean? Is it good or
is it bad?

PacketShaper provides the ability to set acceptability standards and track whether performance
adheres to the standards. You can set the speed that divides good response from bad (500 ms, for
example), and you can set the percentage of transactions that should be within your performance
goal (95 percent, for example).

Packet Exchange Time (PET)

The number of milliseconds between a packet’s departure from PacketShaper and receipt of the
corresponding acknowledgement. This metric reflects only the delay for the network on one side of
PacketShaper.

PET is useful when PacketShaper sits at a service boundary, where each of two parties is
responsible for a portion of the network. PET measures each party’s delay to help determine
appropriate responsibility for slow-downs.

 Technical White Paper Series 5

Synthetic Transactions
PacketShaper can, at your discretion, initiate web or other TCP transactions at periodic intervals to
verify the availability of critical hosts. This activity is similar to scheduled pings or SNMP polls,
but with these important advantages:

• PacketShaper’s detailed analyses of transaction behavior and response times apply to synthetic
transactions, rendering the ability to profile network and host behavior over time. This
information is much more helpful than knowing if a device simply responds to pings or not.

• Because PacketShaper sits at the network edge, polls are local, consume less bandwidth, and
can therefore be more frequent.

• Synthetic transactions can determine if a service or application is running, not just if a server is
responding. They provide a more sophisticated assessment of “availability.”

• Distributed PacketShapers can serve as local clearinghouses for availability information,
forwarding situations of interest or concern to central locations via email, SNMP traps, or
syslog messages. The need for long-distance polling by central management platforms is
eliminated.

Working in a Variety of Topologies
PacketShaper easily fits with your topology, rendering response-time measurements whether it sits
close to clients or to servers and whether or not there is a WAN link in the picture.

 Technical White Paper Series 6

Corporate Servers

PacketShaper

Client PCs

WAN

Corprorate Servers

Client PCs

WAN

PacketShaper

Corprorate Servers

Client PCs

PacketShaper

Server

Network 1:

Network 2:

Network 3:

The topology diagrams show three typical arrangements. The first shows a client-side
PacketShaper, the second shows a server-side PacketShaper, and the last shows PacketShaper in a
LAN environment. Note that PacketShaper must see the traffic it analyzes. In the third diagram, if
the client that sits by itself exchanges information with the server, its traffic does not go through the
PacketShaper and therefore would have no associated response times.

Calculating Delays
PacketShaper tracks the course of a client-server transaction and uses information about a TCP
connection to differentiate one portion of the exchange from another. The following diagram helps
illustrate PacketShaper’s insight into a connection’s components.

The illustration is a standard TCP
diagram showing the course of a
network transaction over time. Arrows
indicate packets traveling the network
between client and server. Time
increases as you descend, with
successive events’ times noted as TN,
T1 representing the first event and
T22, the last.

Client ServerPacketShaper

SYN

SYN-ACK

ACK
Request data (there's no pushflag, so more coming)

Request data with push flag

T2

T5

T3

T4

T1

T6

T7T8
T9

Repeated data packets as needed to accommodate length;

ACKs are eliminated for diagram clarity

Response data

Response data with push flag

ACK

T11

T10

T12

T15

T16

T19

T20

T13

T14

T17

T22

T21

T18

A client initiates a server connection
with a SYN at time T1. PacketShaper
notes the SYN at time T2 and passes it
along to the server. The server
responds with a SYN-ACK at time T3.
PacketShaper notes the SYN-ACK at
time T4, passing it along as usual.

TCP stacks usually respond with a
SYN-ACK very rapidly, within the
kernel and with no context switches.
The SYN-ACK follows the SYN
almost immediately. Therefore time T4
minus time T2 results in an accurate
measure of the round-trip network
delay between PacketShaper and the
server. This interchange produces the
first quantity, the server transit delay (STD):

STD = T4 – T2

The client receives the SYN-ACK and issues the final ACK of the three-way handshake at time T5.
PacketShaper notes the ACK at time T6, passing it along to the server.

It is reasonable to assume that no processing transpires between the client’s receipt of the SYN-
ACK and its own corresponding ACK at time T5. Time T6 minus time T4 yields an accurate

 Technical White Paper Series 7

measure of the round-trip network delay between the client and PacketShaper. The client transit
delay (CTD):

CTD = T6 – T4

Putting together the server transit delay and the client transit delay yields the total delay between
the client and the server for a single round trip.
RTT (Round-Trip Time) = STD + CTD

Determining the Server Delay
The client initiates its request at time T8, arriving at the PacketShaper at time T9. For large
requests, the request is divided into multiple packets. The TCP diagram eliminates the server’s
corresponding ACKs to simplify the picture, because these ACKs are not material to
PacketShaper’s calculations. The last request packet, sent at time T11, has its Push Flag set to one
indicating it is the final packet. PacketShaper notes the time of this last request packet at T12.

After the last request packet arrives at the server at time T13, the server assembles the request,
conducts whatever processing is required for the request, and assembles its response. The server
sends the first packet (of potentially several response packets) at time T14. Time T14 minus time
T13 is the actual server-processing time required for the request, but these times are not visible to
PacketShaper.

PacketShaper knows that the server’s processing time occurred after it saw the last request packet
and before it saw the first response packet (time T15 minus time T12). Additionally, it knows that
another component of this interval was the transit time from PacketShaper to the server and back
again. Conveniently, it already has that figure — it’s the server transit delay (STD). In addition,
there is a small amount of time spent serializing the bits in the response packet and preparing them
for their bit stream. This time was not included in the original server transit delay because the SYN
and ACK packets are extremely small. PacketShaper knows the size of the packet, calculates this
preparation time accordingly (∆1), and adds it to the STD before subtracting the sum from the time
difference.

Server Delay = (T15 – T12) – (STD + ∆1)

Determining the Total Delay
The termination of a transaction is key to calculating the total delay; however, it’s not always
obvious when a transaction ends. The combination of a Push flag from the server and its
corresponding ACK from the client frequently signal the end. But long transactions often insert
Push flags throughout the transaction.

In addition to monitoring Push flags, PacketShaper uses a timer to track transactions and uses the
following rules:

• If a Push flag seems to indicate a transaction’s end, but the server continues sending more data,
the timer continues to advance.

• If the client sends a new request, PacketShaper ends the last transaction and records the last time
noted.

 Technical White Paper Series 8

 Technical White Paper Series 9

• If there is no activity from either the server or the client, PacketShaper considers the transaction
complete and records the last time noted.

• When the connection ends, PacketShaper sees the FIN and records the last time noted.

Using these techniques, PacketShaper notes the last response packet at time T18, makes sure that it
saw all required ACKs for the request packets, and verifies that the last response packet indeed
represented the end of the transaction.

After the client receives the final response packet at time T19, it sends an ACK. The ACK reaches
PacketShaper at time T21. The client’s perspective of response time starts with sending the first
request packet (T8) and ends with receipt of the final response packet (T20). PacketShaper sees that
interval as time T9 until time T21. Although this is a close estimate of the client’s view, it’s missing
some extra preparation time for serializing the first request packet, assuming it is larger than the
final ACK. Because PacketShaper knows the packet-size difference, it can calculate this small
discrepancy (∆2).

Total delay = (T21 – T9) + ∆2

Once PacketShaper has the server delay and the total delay, it can calculate the amount of time the
transaction spent in transit.

Network delay = (Total delay) – (Server delay)

Whereas the RTT represents the transit time for just one round trip, the network delay reflects all
transit time for the transaction. If the transaction’s data is large, multiple packets need to make their
way to and from the server. Only the network delay reflects this overhead. The network delay is not
necessarily an even multiple of the RTT because multiple packets are not sent consecutively but
tend to overlap to varying degrees. In addition, because network and total delay are products of
transaction size, ping times and RTM measurements are not comparable.

As you can see, PacketShaper uses its intermediary position to make time and size observations
during a transaction. Then it incorporates TCP basics to render accurate performance figures.

	Response-Time Technology
	RTM Features
	PacketShaper’s Response-Time Advantages
	Response-Time Metrics and Descriptions
	
	
	
	Total Delay
	Network Delay
	Server Delay
	Normalized Network Delay
	Round Trip Time (RTT)
	The Good and the Bad
	Packet Exchange Time (PET)

	Synthetic Transactions
	Working in a Variety of Topologies
	Calculating Delays
	Determining the Server Delay
	Determining the Total Delay

