How it Works:
TLD Registry Protocols

Ed Lewis – Steve Conte | ICANN 53 | 21 June 2015
What is a Domain Name Registry?

- Database of domain names and associated information in the top level domains of the Domain Name System (DNS) system

- Top-level domain (TLD) space often called a “zone” when discussing from a technical perspective
Other Kinds of Registries

• Regional Internet Registries (RIRs)
 – Network addresses and routing information
• Protocol parameter registries
 – Internet Assigned Numbers Authority (IANA)
• Land ownership
• Motor vehicle ownership
• Gift registries (e.g., wedding, baby)
Registries in the DNS Tree

Root Zone

Registry

Domains

TLDs:
- .TLD
- .otherTLD

Domains:
- domain.tld
- example.tld
- sample.otherTLD

Host: host.domain.TLD
TLD Registry

Data Escrow

Trademark Clearinghouse
DNS
Domain Name System
What is the DNS Protocol?

• A lookup, much akin to looking up someone's phone number in an old style phone book

• Query asks for information (e.g., domain name, type)

• Response contains the information or "no"
Significance of the DNS

- One of the earliest protocols
 - Impacts design, attempts to improve
 - Has proven to be resistant to replacement

- Domain Name Registries exist because of it
 - Means to enter and manage data transferred
• Most important component in terms of resiliency
 – Unlike other components, approaches critical status

• Most used component, untold relying parties
 – High capacity for volume of use
 – Senders of queries are anonymous
Registrar
(Registrant Agent)

Registration Interfaces

Registry Database

IANA
(Internet Assigned Numbers Authority)

DNS Server

DNS
Components of the DNS

• Authoritative server
 – What the registry operates

• Recursive server
 – What issues queries to registry servers

• Stub/clients
 – Individual users (people or automated systems)
Recursive Server

Stub Clients

DNS Server (Authoritative)
DNSSEC
DNS Security Extensions
What does DNSSEC do?

• The end user rarely contacts the true source of DNS information directly
 – DNS data is stored in intermediate servers
 – DNS data is transferred in the open

• End-to-end encryption, like HTTPS, isn't a solution
 – Provide authenticity, completeness
 – Within constraints of DNS
History of DNSSEC

- Developed in 1990's, workshops with operators through 2004

- Internet Engineering Task Force (IETF) base documents published 2004

- Dan Kaminsky's 2008 talk elevated priority
 - *The End Of The Cache As We Know It*
 - Black Hat Conference 2008

- Since 2009 has been in operations in TLDs and the root zone (2010)
Approach to DNSSEC

• Data is accompanied with a digital signature which can be validated with a public key

• Public key cryptography enables a scalable trust building framework

• A hierarchy matching the DNS tree enables a verifiable trust building framework
The Registry's Portion of DNSSEC

- Managing keys for the TLD
- Registering delegation signer (DS) records from registrants
- Signing DS records and publishing
- Signing negative answers ("no")
- Interacting with IANA to register TLD key material
IANA Root Registry

Registrar (Registrant Agent)

DNSSEC Functions

Registry Database

DNS Server
WhoIs
History of WhoIs

- Predating even DNS
- Means to identify the other end(s) of the network
- Simplistic question and answer
- At the time, no concerns about privacy, security, accuracy
• Open a TCP connection to port 43
• Send a question
• Wait
• Receive an answer
• Close the connection
Why is that a Problem? (WhoIs Challenges?)

• Questions and answers undefined
 – Free form is not good for interoperability
 – Early software assumed ASCII only

• No meta-answers, no "use some other server"

• Differentiated access impossible

• No means to validate data in answers
WhoIs Sessions @ICANN53

Next Steps for WhoIs Accuracy Reporting
- Wednesday, 24 June
- 17:00 – 18:30
- Auditorio

Thick WhoIs Policy Implementation – Meeting with the IRT
- Wednesday, 24 June
- 17:00 – 18:30
- Retiro B
EPP
Extensible Provisioning Protocol
What is EPP?

- A business-to-business protocol between a registrar and registry
- Purpose is to edit the registration database
 - Add, delete registered names
 - Add, delete, modify contacts
 - Transfers
 - Plus some other "maintenance"
History of EPP

• 2000-2003 developed in IETF
 – Based on earlier protocols with the COM/NET registry
• 2003-2009 progressed to full standard
• Mandated for gTLDs and sTLDs
• Gained acceptance among ccTLDs
• Current IETF WG to manage extension designated as standard
• EPP need not be exclusive
 – A registry is technically able to use multiple protocols for this
 – Policy might restrict (such as strict First Come First Served via registrars)
EPP Protocol Architecture

- Uses TLS or strongly secured transport layer
- Exchange is encoded in XML
- Server inside registry, clients at registrars
RDAP
Registration Data Access Protocol
What is RDAP?

• Registration Data Access Protocol (RDAP)

• A query/response means to inspect a registration database
 – Regardless of where it is hosted
 – Biased towards registration not only domain names

• A layer on top of HTTPS
 – Reuses much of web-developed technology
Components of RDAP

• Server
 – Software to parse queries
 – Software to access the database
 – Software to prepare response

• Client
 – Web browser API with specific abilities
 – Can perform authentication steps
History of RDAP

• Dissatisfaction with WhoIs led two RIRs to experiment with a Web-based approach
 – Very successful

• From this, the story of RDAP is very much tied to
 – Replacement of the WhoIs protocol
 – Commonality of names and numbers
 – The HTTPS protocol
Basic Description of RDAP

• Query over HTTPS, looks like a URL
 – Like WhoIs, but formalized

• Response over HTTPS
 – Formatted data answering query, using "JSON"
 • Like WhoIs, but formalized
 – Formatted redirection message
 • Not in WhoIs

• To do: operational profile
Features of RDAP

- Defined data model
 - Expansion-friendly query and response formats
- Expansion beyond ASCII characters (I18N)
- Distribution of data sources
- Differentiated access (authorization model)
 - Presumes an authentication model too
- Compatibility with 2010-era software engineering
Registration Data Access Protocol: What’s Next?

- Wednesday, 24 June
- 14:15 – 15:30
- Retiro A
Purpose of Data Escrow

• Store the registration database contents with a third party for safe keeping

• Why?
 – Operator "business" failure
 – Allows for restart of registry by another operator

• Stored by a third party with strict rules for access by anyone else
 – E.g., ICANN can request the deposits under a slim set of circumstances
History of Data Escrow

• IETF Birds of Feather session
 – Deemed uninteresting to the IETF

• This doesn't mean data escrow is unimportant

• The reason is that data escrow is technically very simple, but very specific and related to governing policy
Data Escrow Deposits

• Defined in two places
 – Data "framework" in an Internet Draft
 – Timing of actions in Specification 2 of registry agreements

• A "dump" of the registry database
 – XML version in one or more files
 – Compressed/Encrypted
 – Deposit made every day
 • Full on Sunday; Incremental all other days of the week
Registry Operator

Public Keys

Sunday: Full File Deposit
Other Days: Incremental

Notification

Public Keys

Escrow Agent

Notification

ICANN
What is TMCH?

• Trademark Clearing House (TMCH) is an open but mostly ICANN-specific mechanism to address trademarks in domain names

• Limiting the discussion to registry-touching protocols
 – Two phases, Sunrise and Trademark Claims
 – Protocol built over HTTPS (secured Web)
TMCH in Sunrise

- Sunrise refers to opening of TLD to trademark holders first

- Registry supplies to a TMCH
 - List of domain name registered

- Registry receives from a TMCH
 - A list of marks no longer listed (revoked from a previously published list)
TMCH in Trademark Claims

• Claims refers to early days of a TLD when registrations of trademark "look alikes" result in notices

• Registry supplies to a Trademark Clearing House
 – List of domain names registered matching the pre-registered trademarks

• Registry receives from a Trademark Clearing House
 – A list of labels corresponding to pre-registered trademarks
Trademark Clearing House

(Sunrise) SMD Revocation List via HTTPS

(Claims) DNL List via HTTPS

Names effectively allocated ...

Registry
Protocols of a TLD Registry

- Whols
- RDAP
- DNS & DNSSEC
- Data Escrow
- EPP
- Trademark (TMCH)

TLD Registry
Thank You and Questions

Reach us at:
Email:
edward.lewis@icann.org
steve.conte@icann.org

twitter.com/icann
gplus.to/icann
facebook.com/icannorg
weibo.com/ICANNorg
linkedin.com/company/icann
flickr.com/photos/icann
youtube.com/user/icannnews
slideshare.net/icannpresentations