

tr DDoS Attack December 2015

Attila Özgit .tr ccTLD Manager

Dec, 2015 .tr DDoS Attack

A Summary of a 3 weeks long experience ...

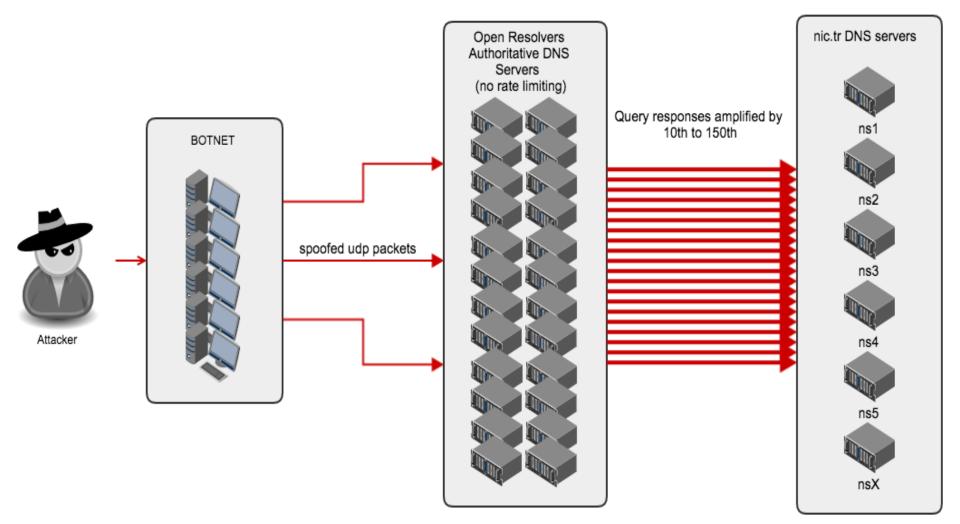
Before DDoS

Infrequent Small scale DoS and DDos Attacks

- Few times every year
- 5-30 mins. each
- Mostly to our registry services
 - \diamond www.nic.tr

□ 6 NS at 5 different locations

- All open source
 - ♦ Linux, Bind, NSD
- Average Bandwidth: 1.5 Mbps per server
- 1.250 QPS per server



DDoS Attack

- □ Started at 14 December 2015 10:20
 - Went on nearly for 3 weeks
 - Towards the end, changed its target to Finance and Government sectors
- Basically a "DNS Amplification Attack"
 - Botnets sending spoofed query packets to
 - ♦ Open DNS resolvers
 - ♦ Authoritative DNS servers (no rate limiting)
 - Amplified by 10-150 times by victims
 - %25 victims from TR IPs
 - Targets 6 NS Servers
 - Secondary target was our registry services (Web)

Anatomy of the DDoS

Communication Infrastructure

□ 3 major ISPs serving TR Internet

- Each connected to Tier-1 at various locations
 No topology info on our side
- Abstraction: 3 major pipes to TR
- □ 4 NSs downstream of ISP-A
- □ 1 NS downstream of ISP-B
- □ 1 NS @Europe

During the Attack ...

- □ Mainly between 09:00-17:00
 - Working hours! (1st shift)
 - 185.000 QPS per server
- Reduced rate and different nature of attack during 2nd and 3rd shift
- □ All NSs were almost always up
 - Reachability and delay problems due to overloaded pipes
- Volume
 - Max. 220 Gbps attack bandwidth at one pipe at one time
 - No synchronized picture of attack history
- Might be one of the largest DDoS observed so far

Basic Defense Mechanisms

Make the surface of the attack wider

- Increasing the # of NSs
 - ♦ 6 to 11
 - \diamond 2 of 11 are ANYCAST (DynDNS)
 - ♦ Effectively 6 to 60
- Analyze traffic
 - Figure out drop rules to be used
- Adaptively react by reconfiguring mitigation services and devices
 - Attackers were highly adaptive to our defence

Currently

- Infrequent, relatively light, 5-10 minutes DDoS
 Attacks are still coming in
- Administrative measures
 - List of critical domain names (Gov, Banks, etc.) expanded
 - $\diamond 100 \rightarrow 600 \rightarrow 1.000+$
- □ Temporarily
 - Zone Updates are done 3 times per day
 - Manual inspection of zone updates

Observations

- Major attack classes
 - UDP flooding
 - Spoofed packets
 - ♦ Source Port 53, Destination Port 53
 - ∻ ...
 - ♦ Almost all known attack patterns

Other attacks

- Application attacks
 - ♦ TCP based
- No Ingress/Egress filtering in subnets
- 8% of registered NSs in our registry DB are "Open Resolvers"

Observations and Lessons

- □ Importance of quick RZM mechanisms
 - Updates were not quick enough
 - ♦ DOC Checks

Effective communication mechanisms

- Within the registry tech team
 - ♦ Use of Near Real Time technologies (Chat, etc.)
- Between Registry and Upstream Operator

♦ Tech team correspondance

- Critical communication should be in written form
 Rules to be coded
- All critical communication should be tolerant to DNS failures

Observations and Lessons

- Effective (and concurrent) communication with
 - IANA/ICANN
 - Other organizations within the country

 Cybersecurity
 - Press (Media)
 - Upstream operators

Questions?