
Introduction	to	Universal	Acceptance	-	2016	

	

	

	

Abstract	
	

	

In	the	1970s	the	characters	available	for	registering	domain	names	was	limited	to	ASCII	characters	(letters	a-

z,	digits	0-9	and	the	hyphen	“-“).	Today	the	majority	of	Internet	users	are	non-English	speakers,	however	the	

dominant	language	used	on	the	Internet	is	English. In	order	to	work	towards	the	internationalization	of	the	
Internet,	 in	2003	the	IETF	started	releasing	standards	providing	technical	guidelines	for	the	deployment	of	

Internationalized	Domain	Names	(IDN)	through	a	translation	mechanism	to	handle	non-ASCII	characters.	A	

decade	later,	and	thanks	to	the	ICANN	New	TLD	Program,	more	than	a	thousand	TLDs	have	been	released.		

In	spite	of	all	these	efforts,	much	software	and	many	applications	are	still	not	Universal	Acceptance-ready,	

causing	problems	to	the	users	whose	native	language	includes	

non-ASCII	characters.		

Universal	 Acceptance	 is	 the	 state	 where	 all	 valid	 domain	

names	 and	 email	 addresses	 are	 accepted,	 validated,	 stored,	

processed	 and	 displayed	 correctly	 and	 consistently	 by	 all	

Internet-enabled	 applications,	 devices	 and	 systems.	 In	 other	

words,	 every	 valid	 web	 address	 resolves	 to	 the	 expected	

website	 and	 every	 valid	 email	 address	 delivers	 mail	 to	 the	

expected	 destination.Due	 to	 the	 rapidly	 changing	 domain	

name	 landscape,	 many	 systems	 do	 not	 recognize	 or	

appropriately	 process	 new	 domain	 names,	 primarily	 because	

they	may	 be	 in	 a	 non-ASCII	 format	 or	 because	 the	 length	 of	

their	TLD	varies	in	length.	The	same	is	true	for	email	addresses	

that	incorporate	these	new	extensions.	

�The	 Universal	 Acceptance	 Steering	 Group	 (UASG),	 a	 community-led,	 industry-wide	 initiative	 that	 is	

supported	by	the	Internet	Corporation	for	Assigned	Names	and	Numbers	(ICANN),	 ,	 is	working	on	creating	

awareness,	 identifying	and	 resolving	problems	associated	with	Universal	Acceptance	of	Domain	Names	 to	

help	ensure	a	consistent	and	positive	experience	for	Internet	users	globally.

This	document	gives	a	broad	 introduction	to	Universal	Acceptance	for	Software	Developers,	CTOs	and	the	

technical	community	in	general.	In	this	text	they	can	find	information	from	basic	definitions,	good	practices	

and	advanced	topics	regarding	Universal	Acceptance.	

The	UASG	and	the	community	are			available	to	provide	advice	to	software	developers	and	implementers	on	

what	 is	 needed.	 	 You	 can	 contact	 us	 to	 share	 your	 ideas	 and	 suggestions	 on	 the	 topic	 at:	 tld-

acceptance@icann.org	and/or	join	the	Universal	Acceptance	discussion		at	http://tinyurl.com/ua-discuss.		

To	learn	more	about	the	effort,	visit	us	at:	http://www.icann.org/universalacceptance.	

	

	

Universal	Acceptance	is	the	

state	where	all	valid	domain	

names	and	email	addresses	are	

accepted,	validated,	stored,	

processed	and	displayed	

correctly	and	consistently	by	all	

Internet-enabled	applications,	

devices	and	systems.	

Luisa Villa� 2/24/2016 9:26 PM
Comment [1]: Registered?	Well	formed?	

Active?	

Luisa Villa� 2/26/2016 5:15 PM
Deleted: t

Luisa Villa� 2/26/2016 5:17 PM
Deleted: 	is	more	than	three	characters	in	

length

Luisa Villa� 2/24/2016 9:08 PM
Comment [2]: Length	varies	

Luisa Villa� 2/26/2016 5:36 PM
Deleted: The	Internet	Corporation	for	
Assigned	Names	and	Numbers	(ICANN)	

Universal	Acceptance	Steering	Group	(UASG),	

a	community-led,	industry	wide	initiative

Luisa Villa� 2/24/2016 9:09 PM
Comment [3]: The	UASG	is	a	Community	

Initiative	supported	by	ICANN	

Luisa � 3/4/2016 5:41 PM
Deleted: happy	to	help

Introduction	to	Universal	Acceptance	-	2016	

	

Contents	

Introduction	..	4	

Problem	Statement	...	4	

Part	1:	Baseline	Concepts	of	Universal	Acceptance	..	5	

Domain	Name	..	5	

Domain	Name	System	(DNS)	..	5	

Top	Level	Domains	(TLDs)	..	6	

Generic	Top	Level	Domains	(gTLDs)	...	6	

Character	Sets	and	Scripts	...	6	

ASCII	&	Unicode	...	7	

Internationalized	Domain	Names	(IDNs)	&	Punycode	...	7	

Email	addresses	&	Email	Address	Internationalization	(EAI)	...	8	

Dynamic	Link	generation	(“Linkification”)	...	8	

Part	2:	Universal	Acceptance	in	Action	...	8	

Five	Criteria	of	Universal	Acceptance	...	8	

Accept	..	8	

Validation	...	8	

Store	...	9	

Process	...	9	

Display	..	9	

User	Scenarios	..	9	

Registering	a	new	TLD	..	9	

Accessing	a	gTLD	..	9	

Using	an	email	address	containing	a	new	gTLD	as	an	online	identity	..	9	

Accessing	an	IDN	..	9	

Using	an	internationalized	email	address	for	email	...	9	

Using	an	internationalized	email	address	as	an	online	identity	...	10	

Dynamically	creating	a	Hyperlink	in	an	Application	...	10	

Developing	an	Application	...	10	

Nonconformance	to	Universal	Acceptance	Practices	..	10	

Technical	Requirements	for	"UA-readiness"	..	10	

High	level	requirements	...	10	

Developer	Considerations	..	11	

Robustness	(Postel’s	law)	...	11	

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 5

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 6

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 7

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 7

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 8

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 8

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 8

Luisa Villa� 3/5/2016 1:47 PM
Deleted: 9

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 9

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 9

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 9

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 9

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 10

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 10

Introduction	to	Universal	Acceptance	-	2016	

Good	Practices	for	developing	and	updating	Universal	Acceptance	Software	..	11	

Accept	..	11	

Validate	..	11	

Store	...	12	

Process	...	12	

Display	..	13	

Unicode	..	13	

Linkification	..	14	

General	...	14	

Authoritative	sources	for	domain	names	...	15	

DNS	root	zone	..	15	

Public	suffix	list	..	15	

Other	Challenges	..	16	

General	...	16	

“IDN-Style	email”,	and	why	it	is	not	the	same	as	EAI	...	16	

Linkification	challenges	..	16	

Part	3:	Advanced	Topics	...	17	

Complex	Scripts	..	17	

Right	to	left	languages	and	Unicode	conformance	..	17	

The	"bidi	Algorithm"	..	17	

The	"bidi"	Rule	for	Domain	Names	..	19	

“Joiners”	-	RFC	5894,	4.3.		Linguistic	Expectations:	Ligatures	and	Digraphs.	...	20	

Homoglyph	Bundling	..	21	

Normalization	and	case	Folding	...	21	

Normalization	..	21	

Case	Folding	...	22	

Open	Issues	..	23	

Topics	for	potential	proposals	to	ecosystem,	ICANN,	IETF	..	23	

Part	4:	Glossary	and	other	resources	..	23	

Glossary	..	23	

Cross-link	to	RFCs	...	26	

RFC3492	(Punycode)	..	26	

RFC5890-94	(IDN)	...	26	

RFC6530-33	(EAI)	...	27	

ISO	10646	(Unicode)	..	27	

GB18030	(China)	..	28	

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 11

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 12

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 15

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 15

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 15

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 16

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 16

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 16

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 19

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 20

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 20

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 20

Luisa Villa� 3/5/2016 1:47 PM
Deleted: 23

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 25

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 25

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 25

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 26

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 27

Introduction	to	Universal	Acceptance	-	2016	

Unicode	Technical	Standard	#46:	Unicode	IDNA	Compatibility	Processing	...	28	

Online	resources	..	28	

Acknowledgements	..	29	

	

Introduction	
	

For	the	purpose	of	complying	with	the	ever-changing	Internationalization	of	the	Internet,	it	is	necessary	to	

be	 aware	 and	 up-to-date	 about	 what	 is	 changing	 and	 most	 importantly	 how	 to	 properly	 address	 these	

changes.	 In	October	2009	 ICANN’s	Board	of	Directors	approved	the	 introduction	of	new	IDN	ccTLDs	 	 (e.g.,	

offering	bj.	
	as	well	as	bj.cn)	and	in	June	2011,	they	approved	and	authorized	the	launch	of	the	new	TLD	

program	 that	 included	 new	 ASCII	 as	 well	 as	

internationalized	 domain	 name	 (IDN)	 top-level	 domains.	

Since	 the	 introduction	 of	 IDN	 ccTLDs	 into	 production	 in	

May	 2010	 and	 the	 March	 2013	 release	 of	 the	 new	

generation	 of	 TLDs	 into	 production,	 the	 pace	 of	

introduction	of	new	TLDs	 into	 the	 root	 zone	dramatically	

increased.	New	 software	must	be	built	 and,	old	 software	

and	 applications	 need	 to	 be	 updated	 to	 keep	 pace	 with	

this	 new	 TLD	 world	 and	 be	 able	 to	 achieve	 a	 state	 of	

Universal	 Acceptance.	 Universal	 Acceptance	 is	 the	 state	

where	 all	 valid	 domain	 names	 and	 email	 addresses	 are	

accepted,	 validated,	 stored,	 processed	 and	 displayed	

correctly	and	consistently	by	all	Internet-enabled	applications,	devices	and	systems.		

With	 this	 document	 we	 want	 to	 provide	 the	 technical	 community	 a	 guide	 that	 serves	 as	 a	 reference	 to	

support	them	in	the	developing	of	Universal	Acceptance-ready	software.	This	document	is	divided	into	four	

parts.		

In	the	first	section	we	explain	baseline	concepts	of	Universal	Acceptance	such	as	what	is	a	Domain	

Name	and	Domain	Name	System,	ASCII	and	Unicode,	Punycode,	Email	Address	Internationalization,	

and	other	basic	concepts.		

In	the	second	part,	we	describe	the	5	criteria	of	Universal	Acceptance	as	well	as	the	good	practices	

for	each	of	these	criteria.	In	this	second	part	you	can	also	find	user	scenarios	and	nonconformance	

practices	to	Universal	Acceptance,	technical	requirements	and	current	challenges.		

In	 the	 third	 section	we	explore	advanced	 topics	 such	as	 right-to-left	 scripts,	 the	 “bidi	 algorithm”,	

Normalization	and	Case	Folding.		

Finally,	in	the	last	part	of	this	document	you	can	find	the	glossary	along	with	other	additional	useful	

online	resources.	

Problem	Statement	
Since	the	first	reported	descriptions	of	universal	access	to	data	and	applications	via	a	distributed	network	of	

computers	 emerged	 in	 the	early	 1960’s,	what	has	evolved	 into	 today’s	 Internet	 is	 a	network	of	networks	

that	 has	 been	 under	 continual	 evolution	 and	 change.	 The	 technologies	 that	 comprise	 the	 naming	

components	 of	 the	 Internet	 are	 no	 exception.	 Since	 the	 earliest	 .COM	 registration,	 SYMBOLICS.COM,	 in	

Universal	Acceptance	is	the	state	

where	all	valid	domain	names	and	

email	addresses	are	accepted,	

validated,	stored,	processed	and	

displayed	correctly	and	

consistently	by	all	Internet-

enabled	applications,	devices	and	

systems.	

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 27

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 27

Luisa Villa� 3/5/2016 1:59 PM
Deleted: 28

Luisa � 3/4/2016 6:10 PM
Deleted: which	

Luisa � 3/4/2016 6:11 PM
Deleted: has	occurred	at	a	fast	pace

Luisa � 3/4/2016 6:12 PM
Deleted: comply	

Luisa � 3/4/2016 6:12 PM
Deleted: to

Luisa � 3/4/2016 6:13 PM
Comment [4]: Kurt	Comment:	Potentially	

add:	“where	all	validly	addressed	emails	and	

all	valid	web	addresses	reach	their	expected	

destination.”		

	

Luisa � 3/4/2016 6:15 PM
Deleted: go	into

Luisa Villa� 2/24/2016 9:22 PM
Comment [5]: 2001,	ICANN.		TLD	2-3	
characters.	Problem	started.	.biz	not	

recognized.	Use	of	statics	lists.		

Introduction	to	Universal	Acceptance	-	2016	

1985,	 the	 number	 and	 characteristics	 of	 domain	 names	 have	 expanded	 to	 reflect	 the	 needs	 of	 the	 ever-

increasing	 global	 use	 of	 the	 Internet	 as	 a	 communal	 resource.	 It	 is	 imperative	 that	 these	 changes	 are	

understood	 and	 accommodated	 throughout	 the	 Internet	 and	 related	 industries	 to	 ensure	 that	 the	 value	

found	through	the	Internet	continues	to	grow	correspondingly.	

	

In	 recent	 years	 a	 great	 number	 of	 new	 TLDs	 with	 ASCII	

characters	 and	 IDN	 top-level	 domains	 (examples	

include	.nyc,	.hsbc,	.eco,	and	.	���)	have	been	released	by	

ICANN.	However	many	applications	and	services	are	not	being	

updated	 to	 manage	 these	 new	 TLDs	 therefore	 affecting	 the	

user	 experience.	 Valid	 email	 addresses	 not	 being	 accepted,	

domain	names	taken	as	a	search	term	in	the	address	bar	of	the	

browser	and	requiring	users	 to	enter	punycoded	text	are	 just	

few	 of	 the	 problems	 users	 encounter	 with	 software	 that	 is	 not	 Universal	 Acceptance-ready.	 The	 naming	

landscape	 is	 growing	 rapidly	 and	 the	 response	 to	 this	 change	 has	 not	 been	 fast	 enough.	 It	 is	 not	 only	

imperative	 to	 create	awareness	 in	 the	 technical	 community	 and	 in	particular	 to	 Software	Developers	 and	

CTOs	but	it	is	also	necessary	to	create	and	provide	more	documentation	that	can	be	used	as	a	reference	for	

the	implementation	of	these	changes.			

Part	1:	Baseline	Concepts	of	Universal	Acceptance	
Domain	Name	
A	 domain	 name	 is	 a	 dotted	 text	 string	 used	 as	 a	 human-friendly	 technical	 identifier	 for	 computers	 and	

networks	 on	 the	 Internet,	 e.g.	 “www.domain.tld”.	 	 Each	 dot	 represents	 a	 “level”	 in	 the	 Domain	 Name	

System	(DNS)	hierarchy.	A	Top-Level	Domain	(TLD)	is	often	called	the	“suffix”	at	the	end	of	a	domain	name	

(“.tld”	 in	 the	 above	example).	 The	 individual	words	or	 characters	 between	 the	dots	 are	 called	 labels.	 For	

those	languages	or	scripts	that	are	written	from	left	to	right,	the	label	furthest	right	represents	the	top-level	

domain.	The	second	 label	 from	the	right	represents	the	second-level	domain.	Any	 labels	 to	the	 left	of	 the	

second-level	domain	are	considered	subdomains	of	 the	second-level	domain	 (sometimes	called	 third-level	

domains).																																																																																													

																																																																	Third-level	domain														Top	level-domain	or	Suffix	

	

www.example.domain.tld	

																																																																																																																																																				Labels																																																																																										

Second-level	domain	

Languages	or	scripts	written	from	right	to	left	will	be	discussed	later	in	this	document.	

Domain	Name	System	(DNS)	
Each	 resource	 on	 the	 Internet	 is	 assigned	 an	 address	 to	 be	 used	 by	 the	 Internet	 Protocol	 (IP).	 Since	 IP	

addresses	are	difficult	to	remember,	servers	collectively	providing	a	public	Domain	Name	System	(DNS)	exist	

at	 well-known	 addresses	 on	 the	 Internet.	 DNS	 provides	 the	mapping	 between	 IP	 addresses	 and	 human-

readable	domain	names.				

Many	applications	and	services	

are	not	being	updated	to	

manage	these	new	TLDs	

therefore	affecting	the	user	

experience.	

Unknown
Deleted:

Introduction	to	Universal	Acceptance	-	2016	

Top	Level	Domains	(TLDs)	
Human	 readable	 domain	 names	 are	 managed	 by	 companies	 known	 as	 registrars.	 When	 one	 registers	 a	

domain,	 it	will	consist	of	multiple	text	strings	representing	multiple	domain	levels,	each	separated	by	a	“.”	

character.	In	right	to	left	scripts,	the	right-most	domain	level	is	the	top-level	domain	(TLD).	

Examples	of	common	TLDs	

• .com	
• .gov	
• .info	
• .org	

Some	TLDs	are	assigned	to	specific	countries,	and	are	called	Country	Code	TLDs.	

Examples	of	ccTLDs	

• China	=	.cn	
• Germany	=	.de	
• United	States	=	.us	

Generic	Top	Level	Domains	(gTLDs)	
Starting	in	2013,	ICANN	(the	organization	responsible	for	the	creation	and	maintenance	of	TLD	assignments)	

has	 generated	 a	 large	 number	 of	 new	 TLDs.	 These	 new	 TLDs	 can	 be	 used	 for	 brands,	 communities	 of	

interest,	 geographic	 communities	 (cities,	 regions)	 and	 others	 that	 are	 generic.	 	 Nevertheless,	 all	 of	 these	

new	TLDs	are	known	as	Generic	Top	Level	Domains	(gTLDs).	Sometimes	new	gTLDs	are	known	as	nTLDs.	

Examples	of	new	gTLDs	

• .app	
• .lawyer	
• .shopping	
• .panasonic	
• .osaka	

Character	Sets	and	Scripts	
Domain	 names,	 of	 course,	 must	 be	 written	 in	 a	 commonly	 used	 language.	 Languages	 are	 written	 using	

writing	 systems.	 Most	 writing	 systems	 use	 one	 script,	 which	 is	 a	 set	 of	 graphic	 characters	 used	 for	 the	

written	form	of	one	or	more	languages.	A	small	number	of	writing	systems	employ	more	than	one	script	at	

the	 same	 time.	 These	 characters	 or	 scripts	 are	 recognized	 by	 humans,	 however	 they	 are	 not	 useful	 to	

computers,	 which	 only	 process	 numbers.	 In	 order	 to	make	 a	 computer	 be	 able	 to	 use	 a	 script,	 (e.g.,	 to	

resolve	a	web	address)	that	script	needs	to	be	encoded	so	that	the	computer	can	use	it.		

The	mechanism	for	this	is	called	a	coded	character	set	(often	abbreviated	CCS
1
).		

To	 resolve	 this,	 a	 character	 mapping	 (also	 called	 coded	 character	 set	 or	 code	 page)	 can	 be	 created	 to	

associate	 characters	 with	 specific	 numbers.	Many	 different	 code	 pages	 have	 been	 created	 over	 time	 for	

different	purposes,	but	for	this	topic	we	will	focus	on	only	two.	

																																																																				
1
	There	are	subtleties	and	details	 to	the	terms	that	are	not	directly	germane	to	our	current	topic;	but	 the	

interested	reader	is	referred	to	https://www.rfc-editor.org/rfc/rfc6365.txt	as	a	useful	starting	point.		

Luisa Villa� 2/24/2016 9:32 PM
Comment [6]: Michael	comments	will	be	

sent	to	the	list	with	editing	proposal.	

Luisa Villa� 2/24/2016 9:35 PM
Deleted: s

Luisa � 3/4/2016 10:54 PM
Deleted: use	

Luisa � 3/4/2016 11:56 PM
Deleted: ,

Introduction	to	Universal	Acceptance	-	2016	

ASCII	&	Unicode	
In	the	examples	above,	all	of	the	text	strings	are	represented	using	the	Latin	character	set.	This	character	set	

is	 included	in	American	Standard	Code	for	Information	Interchange	(ASCII,	or	US-ASCII)	character-encoding	

scheme.		ASCII	is	an	older	encoding	scheme	and	was	based	on	the	English	language.		For	historical	reasons	it	

became	 the	 standard	 character	 encoding	 scheme	 on	 the	 Internet.	 	 ASCII	 uses	 only	 7	 bits	 per	 character,	

which	limits	the	set	to	128	characters.	

ASCII	-	ISO	8859-1	(Latin-1)	Table	
2
	

	

To	see	all	Unicode	character	code	charts	go	to:	http://unicode.org/charts/		

Because	most	writing	 systems	do	not	 use	 the	 Latin	 character	 set,	 alternate	 encodings	 have	 subsequently	

been	adopted.	Unicode	 (also	known	as	 the	Universal	Coded	Character	Set,	or	UCS)	 is	capable	of	encoding	

more	 than	1	million	 items.	 Each	of	 these	Unicode	 characters	 is	 a	 called	 a	 code	point.	 The	most	 common	

form	of	Unicode	is	called	Universal	Coded	Character	Set	Transform	Format	8-bit	(UTF-8).		

Internationalized	Domain	Names	(IDNs)	&	Punycode	
By	 using	 Unicode,	 domain	 names	 can	 contain	 non-	 ASCII	 characters.	 Domain	 names	 using	 non-ASCII	

characters	are	called	Internationalized	Domain	Names	(IDN).			

Since	the	DNS	itself	previously	only	used	ASCII	(see	http://tools.ietf.org/html/rfc6055#section-3	for	current	

status),	 an	 additional	 encoding	was	 created	 to	 allow	non-ASCII	Unicode	 code	points	 to	be	 converted	 into	

ASCII	strings.		

The	algorithm	that	implements	this	Unicode-to-ASCII	encoding	is	called	Punycode,	and	the	output	strings	are	

called	A-Labels.	 	A-Labels	can	be	distinguished	from	an	ordinary	ASCII	 label	because	they	always	start	with	

the	 characters	 “xn--”	 (which	 is	 called	 the	 ACE	 prefix3).	 The	 Punycode	 transformation	 is	 reversible.	 It	 can	

transform	from	Unicode	to	an	A-Label	and	also	from	an	A-label	back	to	Unicode.	

The	only	RFC-defined	use	of	 the	Punycode	algorithm	 is	 for	expressing	 internationalized	domains.	This	has	

not	stopped	some	developers	from	applying	it	to	other	scenarios	rather	than	implementing	Unicode.		

The	 internationalized	 portion	 of	 a	 domain	 name	 can	 be	 in	 any	 level,	 not	 just	 the	 TLD	 but	 also	 the	 other	

labels.	

																																																																				
2
	Image.	California	State	University,	Los	Angeles	

http://web.calstatela.edu/	

3
	ASCII	Compatible	Encoding	(ACE)	prefix,	is	used	to	distinguish	Punycode	encoded	labels	from	ordinary	ASCII	

labels.	

Luisa � 3/5/2016 9:53 AM
Deleted: M

Luisa � 3/5/2016 9:54 AM
Deleted: items	

Luisa Villa� 2/24/2016 9:44 PM
Comment [7]: Not	allowed	non-ASCII	
characters.	Explain	(Apendix?)	Not	every	non-

ascci	character	is	an	IDN.	

Luisa Villa� 2/24/2016 9:39 PM
Deleted: 	any

Luisa � 3/5/2016 9:56 AM
Deleted: which	

Introduction	to	Universal	Acceptance	-	2016	

Examples	of	(imaginary)	IDNs	
• example.���	 (Punycode	encoding	=	example.xn--q9jyb4c)	
• ��.info	 	 (Punycode	encoding	=	xn--uesx7b.info)	
• ���.��	 	 (Punycode	encoding	=	xn--q9jyb4c.xn--uesx7b)	

Email	addresses	&	Email	Address	Internationalization	(EAI)	
Email	 addresses	 contain	 two	 parts:	 a	 local	 part	 (the	 username,	 before	 the	 “@”	 character)	 and	 a	 domain	

(after	the	“@”	character).		The	domain	part	can	contain	can	any	TLD	including	a	new	TLD.	Both	portions	may	

be	Unicode	U-labels.	

NOTE:	An	additional	format,	IDN-Style	Email	Addresses,	will	be	discussed	below.	

Examples	of	(imaginary)	Email	Addresses	using	nTLDs	and	IDNs	
• user@example.lawyer (uses	new	gTLD)
• user@example.��� (uses	internationalized	TLD)
• user@��.info	 	 (uses	internationalized	2

nd
	level	domain)	

• 	�@example.lawyer (uses	internationalized	user	name	and	new	gTLD)

Email	Address	Internationalization	(EAI)	requires	the	use	of	Unicode	in	all	parts	of	the	email	address.	Each	of	

the	4	examples	above	could	be	expressed	as	EAI,	and	this	is	the	preferred	format.	

Dynamic	Link	generation	(“Linkification”)	
Modern	software	(such	as	popular	word	processing	or	spreadsheet	applications)	sometimes	allows	a	user	to	

create	a	hyperlink	simply	by	typing	in	a	string	that	looks	like	a	web	address,	email	name	or	network	path.	For	

example,	typing	“www.icann.org”	into	an	email	message	may	result	in	a	clickable	link	to	

http://www.icann.org	being	automatically	created	if	the	app	treats	“www.”	as	a	special	prefix	or	“.org”	

as	a	special	suffix.	

Linkification	should	work	consistently	for	all	well-formed	web	addresses,	email	names	or	network	paths.	

Part	2:	Universal	Acceptance	in	Action	
Five	Criteria	of	Universal	Acceptance	
As	mentioned	above,	Universal	Acceptance	is	the	state	where	all	valid	domain	names	and	email	addresses	
are	accepted,	validated,	stored,	processed	and	displayed	correctly	and	consistently	by	all	Internet-enabled	
applications,	devices	and	systems.	

These	5	criteria	are	described	below.	

Accept	
Applications	and	services	allow	domain	names	and	email	addresses	to	be	entered	 into	user	 interfaces	

and/or	 received	 from	other	 applications	 and	 services	 via	APIs.	 If	 this	 process	 includes	 a	 validation	 to	

verify	that	the	data	has	been	presented	in	a	supported	format,	meeting	this	criterion	will	depend	on	the	

application	 or	 service	 being	 aware	 of	 current	 valid	 formats,	 which	 include	 different	 lengths	 and	

character	sets	than	was	the	case	previously.	

Validation	
Validation	 is	 intended	to	ensure	that	 the	entered	 information	 is	either	valid	or	at	 least	definitely	not	

invalid.	For	domain	names	and	e-mail	addresses,	many	programmers	have	been	using	some	heuristics	

(e.g.	checking	that	a	top-level	domain	has	the	“correct”	number	of	letters,	or	that	the	letters	are	from	

the	ASCII	 character	 set).	 These	 heuristics	 are	 no	 longer	 applicable	 because	 the	 Internet	 is	 changing.	

Domain	names	and	email	 addresses	 can	now	 include	Unicode	 (non-ASCII)	 characters,	 the	 list	of	 top-

level	domain	names	is	growing,	and	the	top-level	domain	name	can	be	up	to	63	characters.		

Luisa Villa� 2/24/2016 9:51 PM
Comment [8]: Foot	note.		Example	RTL,	

LTR	email	address.	

Luisa � 3/5/2016 9:57 AM
Comment [9]: Kurt	comment:	CLARIFY:	

Can	the	A-label	be	used	instead?	And	why	is	

the	U-label	preferred?	

	

Luisa Villa� 2/24/2016 10:01 PM
Deleted: Universal	Acceptance	is

Luisa � 3/5/2016 10:01 AM
Comment [10]: Kurt	comment:	I	thing	the	

explanations	in	the	brochure	are	clearer	

compared	to	these	explanations.	Maybe	do	a	

mashup	or	start	with	the	brochure	

explanations	and	augment	

	

Luisa Villa� 2/24/2016 10:02 PM
Comment [11]: Overlaps	with	Validation	
and	Processing	

Luisa Villa� 2/24/2016 10:04 PM
Deleted: valid	

Luisa � 3/5/2016 10:01 AM
Comment [12]: Kurt	comment:	Does	this	

validation	belong	in	“Accept,”	i.e.,	are	there	

potentially	two	validations	Or	should	this	

sentence	be	moved	to	Validation	below	for	

clarity?	

	

Acceptance	is	a	strong	word,	maybe	we	

should	say	that	acceptance	is	merely	the	

accepting	of	what	is	typed	into	the	API	so	

readers	don’t	think	there	is	some	sort	of	real	

acceptance	process	going	on	here.	

	

Luisa Villa� 2/24/2016 10:05 PM
Deleted: 	

Introduction	to	Universal	Acceptance	-	2016	

Store	
Applications	and	services		might	require	long-term	and/or	transient	storage	of	domain	names	and	email	

addresses.	Regardless	of	the	lifetime	of	the	data,	it	must	be	stored	either	in	RFC-defined	formats,	or	in	

alternate	 formats	which	can	be	easily	 translated	 to	and	 from	RFC-defined	 formats	 (the	 latter	 is	much	

less	desirable).	Although	RFCs	 require	 the	use	of	UTF-8,	other	 formats	may	be	encountered	 in	 legacy	

code.	See	Good	Practices,	below.	

Process	
Processing	means	using	domain	names	and	email	strings	 in	a	feature.	Additional	validation	may	occur	

during	 processing.	 There	 is	 no	 limit	 to	 the	 number	 of	ways	 that	 domain	 names	 and	 email	 addresses	

could	 be	 processed	 (e.g.	 “identify	 all	 the	 people	 associated	 with	 New	 Zealand	 because	 they	 have	 a	

name	with	a.nz	ccTLD”,	or	“identify	all	the	pharmacists	because	they	have	a	user@*.pharmacy	email	

address”,	or	firewalls	that	might	filter	DNS	requests	that	don’t	apply	to	their	policies.)			

Display	
Displaying	 domain	 names	 and	 email	 addresses	 are	 usually	 straightforward	when	 the	 scripts	 used	 are	

supported	in	the	underlying	OS	and	when	the	strings	are	stored	in	Unicode;	if	these	conditions	are	not	

met,	application-specific	transformations	may	be	required.			

User	Scenarios	
The	 examples	 and	 definitions	 above	 may	 give	 the	 impression	 that	 Universal	 Acceptance	 is	 only	 about	

computer	systems	and	online	services.		It’s	also	about	real	people	using	those	systems	and	services.	

Here	are	some	examples	of	activities	that	require	Universal	Acceptance.		

Registering	a	new	TLD	
An	organization	adopts	a	brand	TLD	to	offer	its	customers	a	differentiated	customer	experience	by	

providing	 email	 address	 customername@example.brand;	 web	 apps	 	 accept	 these	 new	

"@example.brand"	email	addresses	as	valid	as	they	would	with	legacy	TLDs	(e.g.	com,	net,	org).	

Accessing	a	gTLD	
A	user	 accesses	 a	website	whose	domain	name	 contains	 a	 new	TLD,	 by	 typing	 an	 address	 into	 a	

browser	or	clicking	a	link	in	a	document.	Even	though	the	TLD	is	new,	any	browser	the	user	wishes	

to	use	displays	the	web	address	in	its	native	form	and	access	the	site	as	the	user	expects	(and	not	

display	Punycoded	text	to	the	user	unless	it	benefits	the	user	in	some	way).	

Using	an	email	address	containing	a	new	gTLD	as	an	online	identity	
A	user	acquires	an	email	address	with	 the	domain	portion	using	a	new	gTLD,	and	uses	 this	email	

address	 as	 their	 identity	 for	 accessing	 their	 bank	 and	 airline	 loyalty	 accounts.	 Even	 though	 the	

domain	used	in	the	email	address	is	new,	the	bank	or	airline	site	accepts	the	address	exactly	as	if	it	

were	an	older	TLD	such	as	.biz	or	.eu.	

Accessing	an	IDN	
A	user	accesses	an	IDN	URL,	by	typing	an	address	 into	a	browser	or	clicking	a	 link	 in	a	document.	

Even	 if	 the	 domain	 name	 contains	 characters	 different	 than	 the	 language	 settings	 on	 the	 user’s	

computer,	any	browser	the	user	wishes	to	use	will	display	the	web	address	as	expected	and	access	

the	site	successfully.		

Using	an	internationalized	email	address	for	email	
A	user	has	acquired	multiple	email	addresses.	Even	though	some	of	the	email	addresses	are	EAI,	the	

user	can	send	to	and	receive	from	any	email	address	and	using	any	email	client.	

Luisa Villa� 2/24/2016 10:06 PM
Deleted: proprietary	

Luisa Villa� 2/24/2016 10:06 PM
Deleted: Best	

Luisa Villa� 2/24/2016 10:09 PM
Deleted: in

Luisa � 3/5/2016 10:11 AM
Deleted: cist

Luisa Villa� 2/24/2016 10:10 PM
Comment [13]: .pharmacy?	

Luisa Villa� 2/24/2016 10:08 PM
Deleted: conventions

Luisa � 3/5/2016 10:06 AM
Deleted: 	which

Luisa Villa� 2/24/2016 10:12 PM
Deleted: .,

Luisa � 3/5/2016 10:12 AM
Deleted: will

Luisa � 3/5/2016 10:13 AM
Deleted: will	

Luisa Villa� 2/24/2016 10:20 PM
Comment [14]: remove	will?		

Introduction	to	Universal	Acceptance	-	2016	

Using	an	internationalized	email	address	as	an	online	identity	
A	 user	 acquires	 an	 EAI	 email	 address,	 and	 uses	 this	 email	 address	 as	 their	 identity	 for	 accessing	

their	bank	and	airline	loyalty	accounts.	Even	though	the	script	used	in	the	email	address	is	different	

than	the	language	settings	of	both	their	operating	system	and	their	browser,	the	bank	or	airline	site	

accepts	the	EAI	identity	exactly	as	if	it	were	a	non-EAI	identity.	

Dynamically	creating	a	Hyperlink	in	an	Application	
A	user	types	a	web	address	into	a	document	or	email	message.	The	rules	used	by	the	application	to	

automatically	generate	a	hyperlink	are	the	same	even	if	the	address	is	an	EAI	or	contains	a	new	TLD.	

Developing	an	Application	
A	developer	writes	an	app	that	accesses	web	resources.	The	tools	used	by	the	developers	 include	

libraries	which	enable	Universal	Acceptance	by	supporting	Unicode,	IDNs	and	EAI.	

	Nonconformance	to	Universal	Acceptance	Practices	
The	following	are	considered	poor	practice:	

• Displaying	Punycoded	text	to	the	user	without	a	corresponding	user	benefit.	(For	example	to	show	

the	mapping	between	a	U-label	and	a	A-label)	

• Requiring	a	user	to	enter	Punycoded	text	when	signing	up	for	a	new	email	address	or	requiring	a	

user	to	enter	Punycoded	text	when	signing	up	for	a	new	hosted	domain	

• Validating	 the	 syntax	 of	 domain	 name	 or	 email	 address	 using	 out	 of	 date	 criteria	 or	 non-

authoritative	online	domain	name	resources	

• Using	an	outdated	list	of	suffixes	even	though	new	suffixes	are	regularly	being	added	

• Exposing	 internal	 use	of	 Punycoded	 text	 to	users	 (e.g.	 converting	 from	EAI	 to	 an	 IDN-style	 email	

address	when	replying	to	an	EAI	user)	

• Treating	some	domain	names	as	search	terms	rather	than	as	domain	names	because	the	

application	does	not	recognize	them	as	such".	

• Setting	spam	blockers	to	automatically	block	new	TLDs	

Technical	Requirements	for	"UA-readiness"	
High	level	requirements	
An	application	or	service	that	supports	universal	acceptance:	

• Supports	 all	 domain	 names	 regardless	 of	 length	 or	 character	 set.	 To	 learn	 more	 see	 RFC	 5892	

https://tools.ietf.org/html/rfc5892)						

• Allows	international	characters	valid	for	domain	names	and	email	addresses	(i.e.,	all	Unicode	code	

points)	

• Can	 correctly	 render	 all	 code	 points	 in	 Unicode	 strings.	 (See	 RFC	 3490	

https://www.ietf.org/rfc/rfc3490.txt)	

• Can	correctly	render	right-to-left	strings	such	as	those	in	Arabic	and	Hebrew.	(See	more	about	right-

to-left	scripts	at	RFC	5893	at	https://tools.ietf.org/html/rfc5893)	

• Can	communicate	data	between	applications	and	services	in	formats	that	support	Unicode	and	are	

convertible	 to/from	 UTF-8.	 To	 learn	 more	 about	 UTF-8	 go	 to	 RFC	 3629	

https://tools.ietf.org/html/rfc3629)	

• Offers	public	APIs	that	support	Unicode	&	UTF-8		

• Offers	 private	 APIs	 that	 support	 Unicode	&	UTF-8	 (these	 private	 APIs	 apply	 only	 to	 inter-service	

calls	by	the	same	vendor)		

Luisa Villa� 2/24/2016 10:22 PM
Deleted: .	R

Luisa � 3/5/2016 10:19 AM
Comment [15]: Kurt	comment:	I	am	not	

sure	what	this	means	

	

Luisa Villa� 2/24/2016 10:24 PM
Deleted: .

Luisa Villa� 2/24/2016 10:26 PM
Comment [16]: Define	Universal	
Acceptance-Readiness	

Luisa � 3/5/2016 10:20 AM
Deleted: 	which

Luisa Villa� 2/24/2016 10:26 PM
Deleted: 	

Luisa Villa� 2/24/2016 10:26 PM
Deleted: 	

Luisa Villa� 2/24/2016 10:26 PM
Comment [17]: Clarify	

Luisa � 3/5/2016 10:22 AM
Comment [18]: Kurt	comment:	I	am	dating	

myself	but	does	IDNA	accept	ALL	Unicode	

code	points?	

	

Luisa � 3/5/2016 10:23 AM
Deleted: which

Luisa Villa� 2/24/2016 10:27 PM
Deleted: 	

Luisa Villa� 2/24/2016 10:31 PM
Deleted: 	

Luisa � 3/5/2016 10:23 AM
Deleted: which

Luisa � 3/5/2016 10:23 AM
Deleted: which

Luisa Villa� 2/24/2016 10:28 PM
Comment [19]: Good	practices?	

Introduction	to	Universal	Acceptance	-	2016	

• Stores	 user	 data	in	 formats	 that	 support	 Unicode	 and	 is	 convertible	 to/from	 UTF-8	 (such	

conversions	would	be	visible	only	to	the	product/service	owner)		

• Supports	 all	 domain	 name	 strings	 in	 the	 authoritative	 ICANN	 TLD	 list	 and	 the	 community-served	

Public	Suffix	List	regardless	of	length	or	character	set	

• Can	send	email	to	and	receive	from	recipients	regardless	of	domain	or	character	set	(See	RFC	6530	

at	https://tools.ietf.org/html/rfc6530)	

• Treats	EAI	 	addresses	the	same	way	as	their	Punycoded	equivalents	(IDN	email	format)	ASCCI@A-

LABEL	

Developer	Considerations	
Since	many	existing	software	systems	contain	hardcoded	assumptions	about	domains	and	email	addresses,	

code	changes	may	be	required.			

Robustness	(Postel’s	law)	
In	RFC	793,	Jon	Postel	formulated	the	Robustness	Principle,	now	known	as	Postel's	Law,	as	an	

implementation	guideline	for	the	then-new	TCP:	

"Be	conservative	in	what	you	do,	be	liberal	in	what	you	accept	from	others."		

This	is	also	a	good	approach	when	dealing	with	the	vagaries	of	Universal	Acceptance	currently	

implemented	in	the	ecosystem.	

Good	Practices	for	developing	and	updating	software	affecting	Universal	Acceptance	
Accept	

• Always	 offer	 Unicode	 equivalents.	 Users	 should	 be	 allowed,	 but	 not	 required,	 to	 enter	 ASCII	

Compatible	Encoded	(AKA	“Punycoded”)	text	in	place	of	its	Unicode	equivalent.	However,	Unicode	

should	be	shown	by	default,	with	Punycoded	text	only	shown	to	the	user	only	when	it	provides	a	

benefit.		

• Don’t	 generate	 IDN-Style	 email	 addresses,	 but	 be	 able	 to	 handle	 them	 if	 presented	 by	 someone	

else’s	software.	

• Any	user	interface	element	requiring	a	user	to	type	a	domain	name	or	email	address	must	support	

Unicode	and	strings	up	to	256	characters	

Validate	
• Validate	only	 to	the	minimum	extend	necessary.	Don’t	validate	at	all	unless	 it’s	 required	for	the	

operation	of	the	application	or	service.	This	is	the	most	reliable	way	to	ensure	that	all	valid	domain	

names	are	accepted	into	your	systems.		

• Recognize	 that	 syntactically	 correct	 inputs	may	 not	 represent	 domain	 names	 or	 email	 addresses	

currently	in	use	on	the	Internet.		

• If	you	must	Validate,	consider	the	following:		

o Verify	 the	 TLD	 portion	 of	 a	 domain	 name	 against	 an	 authoritative	 table	 such	 as	

http://www.internic.net/domain/root.zone	 or	

http://www.dns.icann.org/services/authoritative-dns/index.html	 or	

http://data.iana.org/TLD/tlds-alpha-by-domain.txt.	 See	 also:	

https://www.icann.org/en/system/files/files/sac-070-en.pdf		

o Query	the	domain	name	against	the	DNS.		

o Require	repeated	entry	of	an	e-mail	address	to	preclude	typing	errors.		

o Validate	 the	characters	 in	 labels	only	 to	 the	extent	of	determining	 that	 the	U-label	does	

not	contain	"DISALLOWED"	code	points	or	code	points	that	are	unassigned	in	its	version	of	

Unicode.	[RFC5892]	

Luisa � 3/5/2016 10:23 AM
Deleted: which

Luisa Villa� 2/24/2016 10:31 PM
Deleted: <#>Can	receive	email	from	

senders	regardless	of	domain	or	character	

set	

Luisa Villa� 2/24/2016 10:32 PM
Comment [20]: DEFINE	

Luisa Villa� 2/24/2016 10:44 PM
Comment [21]: Improve,	clarify	

Luisa Villa� 2/24/2016 10:38 PM
Deleted: developing	and	updating	
Universal	Acceptance	Software

Luisa Villa� 2/24/2016 10:51 PM
Comment [22]: Listen	to	the	call	recording	
(Richard	comments)	

Luisa Villa� 2/24/2016 10:53 PM
Deleted: easiest	

Luisa Villa� 2/24/2016 10:55 PM
Deleted: Do	r

Luisa � 2/22/2016 2:49 PM
Comment [23]: Don	Comment:	Can	we	

add	an	example	of	syntax	validation	code	in	

an	appendix	or	footnote	or	endnote,	please	

	

Introduction	to	Universal	Acceptance	-	2016	

o Limit	validation	of	labels	itself	to	a	small	number	of	whole-label	rules	defined	in	the	RFCs.	

[RFC5894]	

o If	a	 string	 resembling	a	domain	name	contains	 the	 ideographic	 full	 stop	character	��’,	

convert	it	to	a	�.�.		

o Do	 ensure	 that	 the	 product	 or	 feature	 handles	 numbers	 correctly.	 For	 example,	 ASCII	

numerals	and	Asian	ideographic	number	representations	should	all	be	treated	as	numbers.		

Store	
• Applications	and	services	should	support	the	appropriate	Unicode	standards.	

• Information	 should	 be	 stored	 in	 the	UTF-8	 (Unicode	 Transformation	 Format)	whenever	 possible.	

Some	systems	may	require	support	for	UTF-16	as	well,	but	generally	UTF-8	is	preferred.	UTF-7	and	

UTF-32	should	be	avoided.	

• Consider	all	end-to-end	scenarios	before	converting	A-Labels	(Punycode)	to	U-Labels	and	vice	versa	

when	 storing.	 It	 may	 be	 desirable	 to	 maintain	 only	 U-Labels	 in	 a	 file	 or	 database,	 because	 it	

simplifies	searching	and	sorting.	However,	conversion	may	have	 implications	when	 interoperating	

with	older,	non-Unicode-enabled	applications	and	services.	Consider	storing	in	both	formats.	

• Clearly	mark	email	addresses	and	domain	names	during	storage	for	easier	access.	Instances	where	

email	 addresses	 and	 domain	 names	 have	 been	 filed	 under	 the	 “author”	 field	 of	 a	 document	 or	

“contact	info”	in	a	log	file	have	led	to	the	loss	of	origin	as	an	address.	

• If	you	don’t	store	 in	Unicode,	must	be	able	to	match	strings	 in	multiple	formats	(e.g.	a	search	for	

example.���should	also	find	example.xn--q9jyb4c.)	

Process		
• Do	ensure	all	server	responses	should	have	the	Unicode	specified	in	the	content	type.	

• Do	specify	Unicode	in	the	web	server	http	header	and	directly	in	a	web	file.	Every	web	file	should	

include	 the	 UTF-8	 charset.	 It	 is	 important	 to	 ensure	 that	 the	 encoding	 is	 specified	 on	 every	

response.	

• Consider	all	end-to-end	scenarios	before	converting	A-Labels	(Punycode)	to	U-Labels	and	vice	versa	

during	 procesing.	 It	may	 be	 desirable	 to	maintain	 only	U-Labels	 in	 a	 file	 or	 database,	 because	 it	

simplifies	searching	and	sorting.	However,	conversion	may	have	 implications	when	 interoperating	

with	older,	non-Unicode-enabled	applications	and	services.	Consider	storing	in	both	formats.			

• Do	 ensure	 that	 the	 product	 or	 feature	 handles	 sort	 order,	 searches,	 and	 collation	 according	 to	

locale/language	specifications,	and	that	it	addresses	multilanguage	searching	and	sorting.		

• Do	use	MIME	for	email	encoding.	

• Don’t	 use	 URL-encoding	 for	 domain	 names	 (e.g.	 example.��� is	 correct,	 but
example.%E3%81%BF%E3%82%93%E3%81%AA	is	not	correct).	

• Since	the	Unicode	standard	is	continually	expanding,	code	points	not	defined	when	the	application	

or	 service	 was	 created	 should	 be	 checked	 to	 ensure	 they	 will	 not	 “break”	 the	 user	 experience.	

Missing	 fonts	 in	 the	 underlying	 operating	 system	 may	 result	 in	 non-displayable	 characters	

(frequently	 the	“!”character	 is	used	to	represent	 these),	but	 this	situation	should	not	result	 in	a	

fatal	crash.	

• Use	supported	Unicode-enabled	APIs.		

• Use	 the	 latest	 Internationalizing	 Domain	 Names	 in	 Applications	 (IDNA)	 Protocol	 [RFC5891]	 and	

Tables	[RFC5892]	documents	for	Internationalized	Domain	Names	(IDNs).		

• Process	in	UTF-8	format	wherever	possible.		

Introduction	to	Universal	Acceptance	-	2016	

• Ensure	that	the	product	or	feature	handles	numbers	as	expected.	For	example,	ASCII	numerals	and	

Asian	ideographic	number	representations	should	be	treated	as	numbers.	[RFC5892]	

• Upgrade	 applications	 and	 servers/services	 together.	 If	 the	 server	 is	 Unicode	 and	 client	 is	 non-

Unicode	or	vice	versa,	 the	data	will	need	to	be	converted	to	each	code	page	every	time	the	data	

travels	between	server	and	client.	

• Perform	code	reviews	to	avoid	buffer	overflow	attacks.	When	doing	character	transformation,	text	

strings	may	grow	or	shrink	substantially.	

Display	
• Display	 all	 Unicode	 code	 points	 that	 are	 supported	 by	 the	 underlying	 operating	 system.	 If	 an	

application	maintains	 its	own	font	sets,	comprehensive	Unicode	support	should	be	offered	to	the	

collection	of	fonts	available	from	the	operating	system.	

• When	 developing	 an	 app	 or	 a	 service,	 or	 when	 operating	 a	 registry,	 consider	 the	 languages	

supported	and	make	sure	OS	and	applications	cover	those	languages.	

• Convert	 non-Unicode	 data	 to	 Unicode	 before	 display.	 For	 example,	 the	 end	 user	 should	 see	

“example.���”	as	opposed	to	“example.xn--q9jyb4c”.	(This	conversion	 is	an	example	

of	UA-ready	processing).	

• Display	Unicode	by	default.	Use	Punycoded	text	to	the	user	only	when	it	provides	a	benefit.		

• Consider	 that	mixed-script	 addresses	will	 become	more	 common.	 Some	Unicode	 characters	may	

look	 the	 same	 to	 the	 human	 eye,	 but	 different	 to	 computers.	 Don’t	 assume	 that	 mixed-script	

strings	 are	 intended	 for	malicious	 purposes,	 such	 as	 phishing,	 and	 if	 the	 user	 interface	 calls	 the	

strings	to	the	user’s	attention,	be	sure	that	it	does	so	in	a	way	which	is	not	prejudicial	to	users	of	

non-Latin	 scripts.	 Learn	 more	 about	 Unicode	 Security	 Considerations	 at:	

http://unicode.org/reports/tr36/.	

• Use	Unicode	IDNA	Compatibility	Processing	in	order	to	match	user	expectations.	To	learn	more,	go	

to:	http://unicode.org/reports/tr46/.	

• Be	 aware	 of	 unassigned	 and	 disallowed	 characters.	 Learn	 more	 at	 RFC	 5892:	

https://tools.ietf.org/rfc/rfc5892.txt.	

Unicode	
• Use	supported	Unicode-enabled	APIs	-	don’t	spin	your	own	for:		

o String	format	conversions	

o Determining	which	script	comprises	a	string	

o Determining	if	a	string	contains	a	mix	of	scripts	

o Unicode	normalization	/	decomposition	

• Don’t	use	UTF-7	or	UTF-32.		

• Recognize	 that	 mixed-script	 strings	 will	 become	more	 common.	 Don’t	 assume	 that	 mixed-script	

strings	are	intended	for	malicious	purposes,	such	as	phishing,	and	if	your	user	 interface	calls	such	

strings	to	the	user’s	attention,	be	sure	that	it	does	so	in	a	way	that	is	not	prejudicial	to	users	of	non-

Latin	scripts.		

• Use	Unicode	in	cookies	so	they	can	be	read	correctly	by	applications.	

• Use	IDNA	2008	Protocol	[RFC5891]	and	Tables	[RFC5892]	documents.	Don’t	use	IDNA	2003.	

Luisa � 3/5/2016 10:28 AM
Deleted: which

Luisa � 3/5/2016 10:29 AM
Deleted: .

Luisa � 3/5/2016 10:29 AM
Deleted: which

Introduction	to	Universal	Acceptance	-	2016	

• Do	not	automatically	assume	that	external	APIs	can	consume	data	that	has	been	NFKC
4
	converted.	

• Maintain	 IDNA	 and	 Unicode	 tables	 that	 are	 consistent	 with	 regard	 to	 versions,	 i.e.,	 unless	 the	

application	 actually	 executes	 the	 classification	 rules	 in	 the	 Tables	 document	 [RFC5892],	 its	 IDNA	

tables	 must	 be	 derived	 from	 the	 version	 of	 Unicode	 that	 is	 supported	 more	 generally	 on	 the	

system.	 	 As	with	 registration,	 the	 tables	 need	not	 reflect	 the	 latest	 version	of	Unicode,	 but	 they	

must	be	consistent.	

• Validate	the	characters	in	labels	only	to	the	extent	of	determining	that	the	U-label	does	not	contain							

"DISALLOWED"	code	points	or	code	points	that	are	unassigned	in	its	version	of	Unicode.	

• Limit	validation	of	labels	itself	to	a	small	number	of	whole-label	rules.	

o No	leading	combining	marks	

o Bidirectional	conditions	are	met	if	right-to-left	characters	appear	

o Any	contextual	rules	that	are	associated	with	joiner	characters	(and	CONTEXTJ
5
	characters	

more	generally)	are	tested.	

• Don’t	use	UTF-16	except	where	it	is	explicitly	required	(as	in	certain	Windows	APIs)	

o When	 using	UTF-16,	 note	 that	 16	 bits	 can	 only	 contain	 the	 range	 of	 characters	 from	 0x0	 to	

0xFFFF,	 and	 additional	 complexity	 is	 used	 to	 store	 values	 above	 this	 range	 (0x10000	 to	

0x10FFFF).	This	is	done	using	pairs	of	code	units	known	as	surrogates.			

o If	handling	of	surrogate	pairs	is	not	thoroughly	tested,	it	may	lead	to	tricky	bugs	and	potential	

security	holes.	

Linkification	
• If	a	string	resembling	a	domain	name	contains	the	ideographic	full	stop	character	“�”	(U+3002),	do	

accept	it	and	transform	it	to	“.”.	

General	
• Use	authoritative	resources	to	validate	domain	names.	Do	not	make	heuristic	assumptions,	such	as	

“all	TLDs	are	2,	3,	4,	or	6	characters	in	length.”			

• Ensure	 that	 the	 product	 or	 feature	 handles	 numbers	 correctly.	 For	 example,	 ASCII	 numerals	 and	

Asian	ideographic	number	representations	should	all	be	treated	as	numbers.		

• Upgrade	your	app	and	server/service	together.	If	the		server	is	Unicode	and	client	is	non-Unicode,	

or	vice	versa,	data	needs	to	be	converted	to	each	code	page	every	time	the	data	travels	from	server	

to	client	or	vice	versa.			

• Look	for	mail	addresses	in	unexpected	places:	

o Artist/Author/Photographer/Copyright	metadata	

o Font	metadata	

o DNS	contact	records		

o Binary	version	information	

o Support	information	

o OEM	contact	information	

o Registration,	Feedback,	and	other	forms	

• Look	for	potential	IRI	paths	in	unexpected	places	

o Single-label	machine	names	regardless	of	loaded	system	codepage	

o Fully-qualified	machine	names	regardless	of	loaded	system	codepage	

																																																																				
4
	NFKC	(Normalization	Form	Compatibility	Composition):	Characters	are	decomposed	by	compatibility,	then	

recomposed	by	canonical	equivalence.	

5
	CONTEXTJ:	Contextual	Rule	for	Join	controls.	See:	https://tools.ietf.org/html/rfc5892	

	

Luisa � 3/5/2016 10:30 AM
Deleted: which

Introduction	to	Universal	Acceptance	-	2016	

• Use	GB18030	(China)	for	Chinese	language	support
6
.		

• Restrict	the	code	points	allowed	when	generating	new	domain	names	and	email	addresses.	

o All	products	that	use	email	addresses	must	accept	internationalized	email	addresses,	allowing	

characters	>	U+007f.	That	is,	no	characters	>	U+007f	are	disallowed.		

o However,	an	app	or	service	need	not	allow	all	of	these	characters	when	a	user	creates	a	new	

IDN	 or	 email	 address.	 Use	 only	 this	 allowed	 list	 of	 characters	 for	 IDN:	

http://unicode.org/reports/tr36/idn-chars.txt		

o 	Some	likely	security	and	accessibility	concerns	can	be	mitigated	by	preventing	certain	IDNs	or	

email	addresses	from	being	created	in	the	first	place.	 	(NOTE:	Postel’s	Law	would	still	require	

software	to	accept	such	strings	if	presented.)	

• It	 is	 important	to	note	that	Universal	Acceptance	cannot	always	be	measured	through	automated	

test	cases	alone.	For	example,	testing	how	an	app	or	protocol	handles	network	resource	may	not	

always	be	possible	and	sometimes	it	is	best	to	verify	the	compliance	through	functional	spec	review	

and	design	review.		

• Don’t	automatically	assume	that	because	a	component	does	not	directly	call	name-resolution	APIs,	

or	directly	use	email	addresses,	it	does	not	mean	that	it	is	not	affected	the	by	them.	

o Understand	how	network	names	are	obtained	by	the	component;	it	is	not	always	through	user	

interaction.	Following	are	some	examples	on	how	the	component	can	get	a	network	name:		

" Group	Policy		

" LDAP	query		

" Configuration	files		

" Registry		

" Transferred	to/from	another	component/feature.		

• Perform	code	reviews	to	avoid	buffer	overflow	attacks.	

o In	 Unicode,	 strings	 may	 expand	 in	 casing:	 Fluß	 →	 FLUSS	 →	 fluss.	 When	 doing	 character	

conversion,	text	may	grow	or	shrink	substantially.		

Authoritative	sources	for	domain	names	
DNS	root	zone	
There	are	a	few	options	for	the	authoritative	list	of	TLDs.	The	first	option	would	be	the	DNS	root	zone	itself.	

It	 is	 DNSSEC	 signed,	 so	 the	 list	 is	 properly	 authenticated.	 You	 can	 obtain	 the	 root	 zone	

at	http://www.internic.net/domain/root.zone	or	
from	https://www.dns.icann.org/index.html%3Fp=196.html.	

Public	suffix	list	
The	Public	Suffix	List	 (PSL),	managed	by	volunteers	of	 the	Mozilla	Foundation,	provides	an	accurate	 list	of	

domain	name	suffixes.	This	list	is	a	set	of	DNS	names	or	wildcards	concatenated	with	dots	and	it	is	encoded	

using	UTF-8.	 If	you	need	to	use	the	PSL	as	an	authoritative	source	for	domain	names,	your	software	must	

regularly	 receive	 PSL	 updates.	 Do	 not	 bake	 static	 copies	 of	 the	 PSL	 into	 your	 software	 with	 no	 update	

mechanism.	You	can	use	the	link	below	to	make	your	app	download	an	updated	list	periodically.	The	list	gets	

updated	once	per	day	from	Github.	

https://publicsuffix.org/list/public_suffix_list.dat		

																																																																				
6
	GB	18030-2000	is	a	Chinese	government	standard	that	specifies	an	extended	code	page	for	use	in	the	

Chinese	market.	http://icu-project.org/docs/papers/unicode-gb18030-faq.html	

Luisa Fernanda Vill…, 2/20/2016 1:44 AM
Comment [24]: This	link	is	broken.	Do	you	
have	the	correct	link?	

Introduction	to	Universal	Acceptance	-	2016	

Other	Challenges	
General	
• In	some	applications	IDNs	are	encoded	in	Punycode	as	per	IDNA	if	the	name	is	identified	as	an	Internet	

name,	but	UTF-8	is	used	if	the	name	is	identified	as	an	intranet	name.		

• Some	 older	 email	 applications	 were	 encoded	 in	 a	 local	 code	 page	 and	 they	 did	 not	 have	 a	 set	

mechanism	 for	 detecting	 and	 converting	 charset	 as	 needed.	 This	 was	 especially	 true	 for	 the	 email	

header	(i.e.	TO,	CC,	BCC,	Subject).			

• Some	 applications	 that	 do	 IDNA	 (e.g.,	 IE7+)	 break	 for	 non-DNS	 protocols,	 and	 could	 affect	 accessing	

resources	using	non-DNS	protocols.		
• When	allowing	a	user	to	generate	a	domain	name	or	email	address,	consider	avoiding	the	use	ofvisually	

confusing	 characters	 to	 prevent	 homograph	 attacks.	 Use	 only	 this	 allowed	 list	 of	 characters	 for	 IDN:	

ht t p: / / uni code. or g/ r epor t s / t r 36/ i dn- char s . t xt .
• When	a	user	is	aliasing	multiple	email	addresses	it	may	be	tricky	to	manage	these	addresses	as	a	single	

user	identity.	Email	programs	can	direct	traffic	to	such	aliases	to	the	same	mailbox,	but	the	application	

will	still	perceive	these	emails	to	pertain	to	different	identities.	

	

“IDN-Style	email”,	and	why	it	is	not	the	same	as	EAI	
EAI	 is	 defined	as	using	Unicode	only;	A-Labels	 (Punycode)	 are	not	 allowed.	Nevertheless	developers	have	

sometimes	adapted	email	software	and	services	to	handle	IDN-Style	email	addresses	rather	than	make	a	full	

conversion	to	Unicode.			

Because	IDNs	can	be	Punycode	encoded,	some	existing	software	allows	the	IDN	part	of	an	email	address	to	

be	 represented	 in	 ASCII	 or	 Unicode.	 For	 example,	 some	 software	 will	 treat	 these	 two	 “IDN-Style	 email”	

addresses	equivalently	for	all	purposes	(sending,	receiving,	and	searching):	

• 	�	@example.���	

• xn--youq53b@example.xn--q9jyb4c	

However,	some	software	will	not	robustly	treat	these	addresses	as	equivalent,	even	though	are	both	valid,	

which	can	result	in	unpredictable	user	experience	as	messages	are	replied-to	or	forwarded.	

UA-ready	software	and	services	should	be	able	to	handle	and	treat	them	the	same.	Nevertheless,	UA-ready	

software	should	not	generate	email	addresses	that	use	an	A-label-	should	support	true	EAI	only.		

Linkification	challenges	
Even	when	applications	fully	support	new	gTLDs,	linkification	of	IDNs	and	EAI	might	not		happen	as	expected	

by	a	user.	In	some	cases	invalid	links	may	even	be	created.	Here	are	some	examples	of	typical	linkification	in	

existing	applications:	

Example	string	 Likely	result	

example.com	 No	change	
www.example.com	 Link	to	www.example.com	
http://example.com	 Link	to	http://example.com	
http:example.com		 No	change	
http://.com	 Link	to	http://.com	
example.news	 No	change	
www.example.news	 Link	to	www.example.news	
http://example.news	 Link	to	http://example.news	
example.photography	 No	change	

Luisa � 3/5/2016 10:46 AM
Deleted: 	using	

Luisa � 2/22/2016 10:10 PM
Comment [25]: Don	Comment:	This	should	

be	expanded	and	clarified.		Why	are	the	

above	not	equivalent?				

	

Luisa � 3/5/2016 10:48 AM
Comment [26]: Kurt	comment:	take	this	

out?	

Luisa � 3/5/2016 10:49 AM
Deleted: IDN	and	EAI	linkification	may	not

Luisa � 2/22/2016 10:10 PM
Comment [27]: Don	Comment:	There	

needs	to	be	some	additional	context	setting	

here.	

	

Introduction	to	Universal	Acceptance	-	2016	

www.example.photography	 Link	to	www.example.photography	
http://example.photography	 Link	to	http://example.photography	
http://.photography	 Link	to	http://.photography	

�.com		 No	change	
www.
�.com	 Link	to	www.
�.com		
http://
�.com	 Link	to	http://
�.com		

��Com	 No	change	
http://
��com	 No	change	
español.com	 No	change	
www.español.com	 Link	to	www.español.com	
http://español.com	 Link	to	http://xn--espaol-zwa.com/	
http:///español.com	 Link	to	http://xn--espaol-zwa.com/	

	

Part	3:	Advanced	Topics	
Complex	Scripts	
Right	to	left	languages	and	Unicode	conformance	

• Most	scripts	display	characters	from	left	to	right	when	text	is	presented	in	horizontal	lines.	

• There	are	also	several	scripts	 (such	as	Arabic	or	Hebrew)	where	the	ordering	of	horizontal	 text	 in	

display	is	from	right	to	left.		

• The	text	can	also	be	bidirectional	(left	to	right	–	right	to	left)	when		a	right	to	left	script		uses	digits	

that	are	written	from	left	to	right	or	when	it	uses	embedded	words	from	English	or	other	scripts.	

• Challenges	and	ambiguities	can	occur	when	the	horizontal	direction	of	the	text	 is	not	uniform.	To	

solve	this	issue	there	is	an	algorithm	to	determine	the	directionality	for	bidirectional	Unicode	text.		

• There	are	a	set	of	rules	that	should	be	applied	by	the	application	to	produce	the	correct	order	at	

the	time	of	display	which	are	described	by	the	Unicode	Bidirectional	Algorithm.	We	generally	refer	

to	this	as	"the	bidi	algorithm".	

The	"bidi	Algorithm"	
• The	 "bidi"	 algorithm	 describes	 how	 software	 should	 process	 text	 that	 contains	 both	 left-to-right	

(LTR)	and	right-to-left	(RTL)	sequences	of	characters.	

• The	base	 direction	 assigned	 to	 the	 phrase	will	 determine	 the	 order	 in	which	 text	 is	 displayed.	 It	

establishes	a	directional	context	that	the	bidi	algorithm	refers	to	at	various	points	to	choose	how	to	

handle	the	text.	

• To	know	 if	 a	 sequence	 is	 left-to-right	or	 right-to-left	 character,	each	character	 in	Unicode	has	an	

associated	directional	property.	Most	letters	are	strongly	typed	(strong	characters)	as	LTR	(left-to-
right).	 Letters	 from	 right-to-left	 scripts	 are	 strongly	 typed	 as	 RTL	 (right-to-left).	 A	 sequence	 of	

strongly-typed	 RTL	 characters	 will	 be	 displayed	 from	 right	 to	 left.	 This	 is	 independent	 of	 the	

surrounding	base	direction.	For	example:	(LTR)	Dubai	-		دبي		(AL).	

• Text	with	different	directionality	 can	be	mixed	 in	 line.	 In	 that	 case	 the	bidi	 algorithm	produces	a	

separate	 directional	 run	 out	 of	 each	 sequence	 of	 contiguous	 characters	 with	 the	 same	

directionality.	

• Spaces	and	punctuation	are	not	strongly	typed	as	either	LTR	or	RTL	in	Unicode,	because	they	may	

be	used	in	either	type	of	script.	They	are	therefore	classified	as	neutral	or	weak	characters.	

• Weak	 characters	 are	 those	with	 vague	 directionality.	 Examples	 of	 this	 type	 of	 character	 include	

European	digits,	Eastern	Arabic-Indic	digits,	arithmetic	symbols,	and	currency	symbols.	Punctuation	

Introduction	to	Universal	Acceptance	-	2016	

symbols	that	are	common	to	many	scripts,	such	as	the	colon,	comma,	full-stop,	and	the	no-break-

space	also	fall	within	this	category.	

• The	directionality	of	Neutral	characters	is	indeterminable	without	context.	Some	examples	include	

tabs,	paragraph	separators,	and	most	other	whitespace	characters.	

• When	a	neutral	character	is	between	two	strongly	typed	characters	that	have	the	same	directional	

type,	 it	 will	 also	 assume	 that	 directionality.	 For	 example,	 a	 neutral	 character	 between	 two	 RTL	

characters	 will	 be	 treated	 as	 a	 RTL	 character	 itself,	 and	 will	 have	 the	 effect	 of	 extending	 the	

directional	 run:	امارات.دبي	 	Even	 if	 there	are	several	neutral	characters	between	the	 two	strongly	
typed	characters,	they	will	all	be	treated	in	the	same	way.	

• When	 a	 space	 or	 punctuation	 falls	 between	 two	 strongly	 typed	 characters	 that	 have	 different	

directionality,	 the	 neutral	 character	 (or	 characters)	 will	 be	 treated	 as	 if	 they	 have	 the	 same	

directionality	as	the	prevailing	base	direction.	For	example:	example.امارات	

• Unless	 a	 directional	 override	 is	 present	numbers	 are	 always	 encoded	 (and	 entered)	 big-endian
7
,	

and	 the	 numerals	 rendered	 LTR.	 The	 weak	 directionality	 only	 applies	 to	 the	 placement	 of	 the	

number	in	its	entirety.	

• Explicit	formatting	characters,	are	also	referred	to	as	"directional	formatting	characters",	these	are	

special	Unicode	sequences	that	direct	the	unicode	algorithm	to	modify	its	default	behavior.	These	

characters	can	be	subdivided	into	"marks",	"embeddings",	"isolates",	and	"overrides".	Their	effects	

continue	until	the	occurrence	of	either	a	paragraph	separator,	or	a	"pop"	character.	

o Marks:	These	characters	are	very	light-weight	codes.	They	act	in	the	same	way	as	right-to-

left	 or	 left-to-right	 characters,	 with	 the	 exception	 	 that	 they	 do	 not	 have	 any	 other	

semantic	 effect.	 If	 a	 "weak"	 character	 is	 followed	 by	 another	 "weak"	 character,	 the	

algorithm	will	check	for	the	first	neighboring	"strong"	character.	Sometimes	this	can	lead	

to	 unintentional	 display	 errors.	 These	 errors	 are	 corrected	 with	 "marks".	 The	 mark	

(U+200E	 left-to-right	mark	 (HTML	‎	 ·	‎	 ·	 LRM)	or	U+200F	 right-to-left	mark	

(HTML	‏	 ·	‏	 ·	 RLM))	 is	 to	 be	 inserted	 into	 a	 location	 to	make	 an	 enclosed	

weak	character	inherit	its	writing	direction.	

RLM	 Right-to-Left	Mark			 Right-to-left	zero-width	character	

LRM	 Left-to-Right	Mark			 Left-to-right	zero-width	character	

	

o Embeddings:	 An	 "embedding"	 indicates	 that	 a	 portion	 the	 of	 text	 is	 to	 be	 treated	 as	

directionally	distinct.	The	text	within	the	scope	of	the	embedding	formatting	characters	is	

not	independent	of	the	neighboring	text.	Also,	characters	within	an	embedding	can	affect	

the	ordering	of	characters	outside.	As	of	Unicode	6.3,		embedding	is	being	discouraged	in	

favor	of	"isolates".	

																																																																				
7	“Big-endian	and	little-endian	are	terms	that	describe	the	order	in	which	a	sequence	of	bytes	are	stored	in	
computer	memory.	Big-endian	is	an	order	in	which	the	"big	end"	(most	significant	value	in	the	sequence)	is	
stored	first	(at	the	lowest	storage	address).	Little-endian	is	an	order	in	which	the	"little	end"	(least	significant	
value	in	the	sequence)	is	stored	first”.	To	learn	more	go	to:	

http://searchnetworking.techtarget.com/definition/big-endian-and-little-endian		

Introduction	to	Universal	Acceptance	-	2016	

RLE	 Right-to-Left	Embedding			 Treat	the	following	text	as	

embedded	right-to-left.	

LRE	 Left-to-Right	Embedding			 Treat	the	following	text	as	

embedded	left-to-right.	

	

o Isolates:	The	"isolate"	directional	formatting	characters	indicate	that	a	portion	of	the	text	

is	to	be	treated	as	directionally	isolated	from	its	surroundings.	As	of	Unicode	6.3,	these	are	

the	 formatting	 characters	 that	 are	 recommended	 in	 new	 documents.	 Isolates	 can	 be	

nested,	and	may	be	located	within	embeddings	and	overrides.	

o Overrides:	The	"override"	directional	formatting	characters	allow	for	special	cases,	such	as	

for	part	numbers	 (e.g.	 to	 force	a	part	number	made	of	mixed	English,	digits	and	Hebrew	

letters	to	be	written	from	right	to	left).	"Overrides"	are	recommended	to	avoid	wherever	

possible.	"Overrides"	can	be	nested	one	inside	another,	and	in	embeddings	and	isolates.	

RLO	 Right-to-Left	Override			 Force	following	characters	to	be	

treated	as	strong	right-to-left	

characters.	

LRO	 Left-to-Right	Override			 Force	following	characters	to	be	

treated	as	strong	left-to-right	

characters.	

	

o Pops:	 The	 "pop"	 directional	 formatting	 characters	 put	 an	 end	 to	 the	 scope	 of	 the	most	

recent	"embedding",	"override",	or	"isolate".	

PDF	 Pop	Directional	Format			 Restore	the	bidirectional	state	to	

what	it	was	before	the	last	LRE,	

RLE,	RLO,	LRO.	

	

• To	see	the	bidi	algorithm	in	detail	go	to:	http://unicode.org/reports/tr9/tr9-11.html		

The	"bidi"	Rule	for	Domain	Names		
The	section	2	of	the	RFC	5893	lists	the	following	six	conditions	to	be	met	for	the	labels	in	Bidi	domain	names.		

A	“Bidi	domain	name”	contains	at	least	one	RTL	label.	

1. The	first	character	must	be	a	character	with	Bidi	property	L,	R,	or	AL.	If	it	has	the	R	or	AL	property,	it	

is	an	RTL	label;	if	it	has	the	L	property,	it	is	an	LTR	label.		

2. In	an	RTL	label,	only	characters	with	the	Bidi	properties	R,	AL,	AN,	EN,	ES,	CS,	ET,	ON,	BN,	or	NSM	

are	allowed.		

3. In	an	RTL	label,	the	end	of	the	label	must	be	a	character	with	Bidi	property	R,	AL,	EN,	or	AN,	

followed	by	zero	or	more	characters	with	Bidi	property	NSM.		

4. In	an	RTL	label,	if	an	EN	is	present,	no	AN	may	be	present,	and	vice	versa.		

5. 	In	an	LTR	label,	only	characters	with	the	Bidi	properties	L,	EN,	ES,	CS,	ET,	ON,	BN,	or	NSM	are	

allowed.		

6. In	an	LTR	label,	the	end	of	the	label	must	be	a	character	with	Bidi	property	L	or	EN,	followed	by	zero	

or	more	characters	with	Bidi	property	NSM.	

• To	learn	more	about	the	bidi	rule	go	to:	https://tools.ietf.org/html/rfc5893	

Introduction	to	Universal	Acceptance	-	2016	

“Joiners”	-	RFC	5894,	4.3.		Linguistic	Expectations:	Ligatures	and	Digraphs.		
• Some	languages	use	alphabetic	scripts	in	which	single	phonemes	are	written	using	two	characters,	

called	a	"digraph".	 In	other	words	a	digraph	 is	a	group	of	 two	successive	 letters	 that	represent	a	

single	sound	(or	phoneme).		
• Common	 digraphs	 in	 English	 include	 ch	 (as	 in	 church),	 ph	 (phone),	 sh	 (shoe),	 th	 (then),	 	 and	 th	

(think).		
• Some	digraphs	are	 fully	 joined	as	 ligatures.	 In	writing	and	 typography,	 a	 ligature	happens	where	

two	or	more	graphemes	or	 letters	are	 joined	as	a	single	glyph.	An	example	 is	 the	character	æ	as	

used	 in	 English,	 in	 which	 the	 letters	 a	 and	 e	 are	 adjoined.	 Another	 example	 of	 a	 ligature	 is	 the	

ampersand	(&).	

• If	ligatures	and	digraphs	have	the	same	interpretation	in	all	languages	that	use	a	given	script,	

Unicode	normalization	generally	resolves	the	differences	and	make	them	match.		

• When	they	have	different	interpretations,	matching	must	use	alternative	methods,	likely	chosen	at	

the	registry	level,	or	users	must	be	educated	to	understand	that	matching	will	not	occur.	

• An	 example	 of	 different	 interpretation	 can	 be	 found	 in	 the	 Nordic	 languages.	 In	 the	 Norwegian	

language	 the	 ligature	 "ae"	 is	 the	 27th	 letter	 of	 its	 29-letter	 extended	 Latin	 alphabet,	which	 also	

happens	 to	 be	 the	 equivalent	 of	 the	 28th	 letter	 of	 the	 Swedish	 alphabet	 (U+00E4	 LATIN	 SMALL	

LETTER	 A	 WITH	 DIAERESIS).	 The	 same	 (U+00E4)	 character	 is	 also	 part	 of	 the	 German	 alphabet	

where,	unlike	in	the	Nordic	languages,	the	two-character	sequence	"ae"	is	usually	treated	as	a	fully	

acceptable	equivalent	orthography	for	the	"umlauted	a"	character	(ä).	The	opposite	though	is	not	

true,	and	those	two	characters	cannot	be	combined	into	an	"umlauted	a"	(ä).	

• The	Unicode	Consortium	lists		two	main	strategies		to	determine	the	joining	behavior	of	a	particular	

character	after	applying	the	BIDI	algorithm:		

o When	shaping,	an	implementation	can	refer	back	to	the	original	backing	store	to	see	if	
there	were	adjacent	ZWNJ	or	ZWJ	characters.8	(To	learn	more	about	ZWNJ/ZWJ	go	to:	

http://www.unicode.org/L2/L2005/05307-zwj-zwnj.pdf)	

o Alternatively,	the	implementation	can	replace	ZWJ	and	ZWNJ	by	an	out-of-band	character	
property	 associated	 with	 those	 adjacent	 characters,	 so	 that	 the	 information	 does	 not	
interfere	with	the	BIDI	algorithm	and	the	information	is	preserved	across	rearrangement	of	
those	characters.	Once	the	BIDI	algorithm	has	been	applied,	that	out-of-band	information	
can	then	be	used	for	proper	shaping.9	

• In	 the	 absence	 of	 care	 by	 registries	 about	 how	 strings	 that	 could	 have	 different	 interpretations	

under	IDNA2003	and	the	current	specification	are	handled,	it	is	possible	that	the	differences	could	

be	 used	 as	 a	 component	 of	 name-matching	 or	 name-confusion	 attacks.	 Such	 care	 is	 therefore	

appropriate.	

• To	learn	more	about	¨joiners¨go	to:	https://tools.ietf.org/html/rfc5894#page-19	

																																																																				
8
	Mark	Davis,	Aharon	Lanin,	Andrew	Glass.	2015.	Unicode.	[ONLINE]	Available	at:	
http://unicode.org/reports/tr9/.	[Accessed	11	February	16].	
9
	Mark	Davis,	Aharon	Lanin,	Andrew	Glass.	2015.	Unicode.	[ONLINE]	Available	at:	
http://unicode.org/reports/tr9/.	[Accessed	11	February	16].	

Introduction	to	Universal	Acceptance	-	2016	

Homoglyph	Bundling	
• Homoglyphs	are	characters	which,	due	to	similarities	 in	size	and	shape,	might	appear	 identical	at	

first	 glance.	 For	 example,	 Cyrillic	 character	 a	→	 Unicode	 number	 0430	 and	 Latin	 character	 a	→	

Unicode	number	0061.		

• To	 prevent	 that	 confusingly	 looking	 domain	 names	 are	 registered,	 registries	 can	 use	 the	

“homoglyph	bundling”	procedure.	

Homoglyph	bundling	is	when	you	register	an	IDN	and	the	registration	system	automatically	bundles	all	the	

homoglyphs	of	that	name	(if	there	are	any).	This	means	that	several	domain	names	are	bundled	at	one	time,	

and	none	of	the	other	domain	names	in	that	bundle	can	be	registered.		

Normalization	and	case	Folding	
Normalization	

• Unicode	Normalization	helps	to	determine	whether	any	two	Unicode	strings	are	equivalent	to	each	

other.	 Some	 characters	 can	 be	 represented	 in	Unicode	 by	 several	 code	 sequences.	 This	 is	 called	

Unicode	equivalence.	

• Unicode	 provides	 two	 types	 of	 equivalences:	 canonical	 (NF)	 and	 compatibility	 (NFK).																																					

Sequences	 representing	 the	 same	 character	 are	 called	 canonically	 equivalent.	These	 	 sequences	

have	the	same	appearance	and	meaning	when	printed	or	displayed.	

For	example:	

U+006E	(the	Latin	lowercase	"n")	followed	by	U+0303	(the	combining	tilde	"◌̃")	=	ñ	

U+00F1	(the	lowercase	letter	"ñ"	of	the	Spanish	alphabet)	=	ñ	

• Compatibility	 equivalents	 are	 sequences	 which	 can	 have	 different	 appearances,	 but	 in	 some	

contexts	the	same	meaning.	It	is	a	weaker	type	of	equivalence	between	characters	or	sequences	of	

characters.	

										For	example:	

U+FB00	(the	typographic	ligature	"ff")	=	ff	

U+0066	U+0066	(two	Latin	"f"	letters)	=	ff	

• In	 the	 example	 above,	 the	 code	 point	 U+FB00	 is	 defined	 to	 be	 compatible,	 but	 not	 canonically	

equivalent	 to	 the	 sequence	 U+0066	 U+0066.	 Sequences	 that	 are	 canonically	 equivalent	 are	 also	

compatible,	but	the	opposite	is	not	necessarily	true.	

• There	are	four	Unicode	Normalization	forms:	

o NFD	 (Normalization	 Form	 Canonical	 Decomposition):	 Characters	 are	 decomposed	 by	

canonical	equivalence,	and	various	combining	characters	are	arranged	in	a	defined	order.	

o NFC	 (Normalization	 Form	Canonical	 Composition):	 Characters	 are	 decomposed	 and	 then	

recomposed	by	canonical	equivalence.	

o NFKD	 (Normalization	Form	Compatibility	Decomposition):	Characters	are	decomposed	by	

compatibility,	and	various	combining	characters	are	arranged	in	a	defined	order.	

NFKC	 (Normalization	 Form	 Compatibility	 Composition):	 Characters	 are	 decomposed	 by	

compatibility,	then	recomposed	by	canonical	equivalence.	

• Note	that	none	of	the	Normalization	Forms	are	closed	under	string	concatenation.	

• Singletons	are	characters	which	never	remain	 in	the	text	after	normalization.	One	example	 is	 the	

omega	symbol	(Ω)	Source:	(2126)/	NFD	and	NFC:	(03A9).	

Introduction	to	Universal	Acceptance	-	2016	

• Canonical	 composites,	 also	 known	as	precomposed	 characters	 are	usually	precomposed	 in	 the	C	

forms	and	decomposed	 in	the	D	forms.	 	For	example	Ô	source	(00F4)	/NFD	O	 (006F)	+	^	 (0302)	/	

NFC	Ô	(00F4).	

• Normalization	 provides	 a	 uniform	 order	 for	 all	 D	 and	 C	 forms	 and	 a	 unique	 order	 for	multiple	

combining	marks.	For	example:	Source	Ṩ	(1E69)	/	NFD	S	(0073)	+.	(0323)	+	˙	(0307)	/	NFC	Ṩ	(1E69).	

• Many	 formatting	 distinctions	 are	 removed	 in	 the	 NFKC	 and	 NFKD	 forms,	 they	 use	 compatibility	

composites	like	in	the	example	below:	

Source	 NFD	 NFC	 NFKD	 NFKC	

fi	 fi	 fi	 f	i	 f	i	

FB01	 FB01	 FB01	 0066	+	0069	 0066	+	0069	

• The	composition	phase	of	NFC	and	NFKC	are	the	same,	only	their	decomposition	phase	is	different,	

in	this	case	NFKC	applies	compatibility	decompositions.	

• It	 is	 recommended	 by	 the	 W3C	 to	 use	 Normalization	 Form	 C	 for	 all	 content	 in	 order	 to	 avoid	

interoperability	 problems	 arising	 from	 the	 use	 of	 canonically	 equivalent,	 yet	 different,	 character	

sequences.	

• Normalization	Forms	KC	and	KD	may	remove	distinctions	that	are	important	to	the	semantics	of	the	

text.	 In	 this	 case	 it	 is	 best	 to	 think	 of	 these	 Normalization	 Forms	 as	 being	 like	 uppercase	 or	

lowercase	mappings.		

• To	 see	 a	 list	 of	 all	 characters	 that	may	 change	 in	 any	 of	 the	 Normalization	 Forms	 please	 go	 to:	

http://www.unicode.org/charts/normalization/		

• Don’t	normalize	by	converting	to	uppercase,	or	 ignoring	nonspacing	characters,	because	this	may	

also	make	 sorting,	data	 copy,	data	 import	 and	export,	data	 retrieval	by	 client	 applications	 rather	

difficult	and	may	result	in	data	loss	or	corruption.	

• Only	strings	NOT	transformed	by	NFKC	are	valid.	

• When	 two	 applications	 share	Unicode	data,	 but	 normalize	 them	differently,	 errors	 and	 data	 loss	

can	occur.		

• Normalization	 Forms	 must	 remain	 stable	 over	 time.	 In	 other	 words,	 a	 string	 must	 remain	

normalized	under	all	future	versions	of	Unicode	(backward	compatibility).	

• To	learn	more	about	Normalization	Forms	go	to:	http://www.unicode.org/reports/tr15/			

Case	Folding	
• Case	folding	is	the	process	of	making	two	texts	identical,	which	differ	in	case	but	are	otherwise	"the	

same".	

• Mapping	 [a-z]	 to	 [A-Z]	 works	 for	 most	 simple	 ASCII-only	 text	 documents.	 However,	 it	 begins	 to	

break	down	with	languages	that	use	additional	characters.		

• Unicode	defines	the	default	case	fold	mapping	for	each	Unicode	code	point.	There	are	common	and	
full	 case	 fold	 mappings.	 The	 common	 fold	 mappings	 are	 those	 which	 have	 a	 simple,	 straight-

forward	mapping	 to	 a	 single	matching	 (mainly	 lowercase)	 code	point.	 The	 full	 fold	mappings	 are	

those	which	would	normally	require	more	than	one	Unicode	character.	

• An	example	of	a	'full'	case	fold	mapping	is	the	character	ß	U+00DF	LATIN	SMALL	LETTER	SHARP	S,	a	

letter	that	is	commonly	used	in	the	German	language.	The	'"full"	mapping	of	this	character	is	to	two	

ASCII	letters	"s".	

• Some	 languages	 need	 case-folding	 to	 be	 tailored	 to	meet	 specific	 linguistic	 needs.	One	 common	

example	of	 this	 are	 Turkic	 languages	written	 in	 the	 Latin	 script.	 The	 classic	 example,	 the	 Turkish	

Introduction	to	Universal	Acceptance	-	2016	

word	 "Diyarbakır"	 contains	 both	 the	 dotted	 and	 dotless	 letters	 i.	When	 rendered	 into	 upper	

case,	this	word	appears	like	this:	DİYARBAKIR.	Notice	that	the	ASCII	letter	i	maps	to	U+0130	LATIN	

CAPITAL	 LETTER	 I	WITH	DOT	ABOVE,	while	 the	 letter	 ı	 (U+0131	 LATIN	 SMALL	 LETTER	DOTLESS	 I)	

maps	to	the	ASCII	uppercase	I.		

• One	important	consideration	according	to	the	W3C	is	whether	the	values	are	restricted	to	the	ASCII	

subset	 of	 Unicode	 or	 if	 the	 vocabulary	 permits	 the	 use	 of	 characters	 (such	 as	 accents	 on	 Latin	

letters	or	a	broad	range	of	Unicode	including	non-Latin	scripts)	that	potentially	have	more	complex	

case	folding	requirements.
10
	

Best	Practices	for	Case	Folding	
• Consider	 Unicode	 Normalization	 in	 addition	 to	 case	 folding.	 To	 learn	 more	 about	 "Unicode	

normalization"	 go	 to:	 http://www.w3.org/TR/charmod-norm/	 or	 to	

http://unicode.org/reports/tr15/	

• Normalize	case	in	a	language	sensitive	manner.		

• Always	 use	 the	 language	 (locale)	 when	 case	 folding	 and	 look	 out	 for	 specific	 case	 folding	

idiosyncrasies.		

o If	your	comparison	should	be	the	same	regardless	of	 language	or	 locale,	always	pass	the	

US	English	or	empty	(root,	C,	POSIX,	null)	locale	to	your	case-folding	function.	

o If	your	application	is	comparing	internal	values	for	equality	(as	opposed	to	sorting	lists	or	

comparing	values	linguistically),	you	should	use	a	consistent	caseless	compare	function.		

Open	Issues	
	

Topics	for	potential	proposals	to	ecosystem,	ICANN,	IETF	
• Due	to	differences	in	IDNA2003	and	2008,	similar	strings	such	as	foosball.de	and	foSSball.de	

may	or	may	not	resolve	to	the	same	address.	They	might	not	even	belong	to	the	same	owner!	

• Can/should	we	 encourage	 “bundling”	 at	 the	 registration	 level	 for	 compatibility?	 	 (I.e.	 should	we	

require	a	registry	to	sell	both	to	the	same	customer?)	

• Should	ICANN	restrict	the	delegation	of	homograph	domain	names	(at	any	level,	not	just	TLD)?	

• Define	IDN-style	email	

• UTR#36	–	does	not	discuss	structured	text?	

• Structural	separators	like	–	and	numerals	–	define	behavior	esp.	for	bidirectional	

• Do	tooltips	correctly	show	the	TLD	for	mixed	RTL/LTR?	(show	visual	example)	–	best	practices?	

Part	4:	Glossary	and	other	resources	
Glossary	
	

• A-label:	The	ASCII-compatible	encoded	(ACE)	representation	of	an	internationalized	domain	name,	

i.e.	 how	 it	 is	 transmitted	 internally	within	 the	DNS	protocol.	A-labels	 always	 commence	with	 the	

prefix	“xn--”.	Contrast	with	U-label.	

• ACE	prefix:	ASCII	Compatible	Encoding	Prefix.	

																																																																				
10
	Addison	Phillips.	2015.	W3C.	[ONLINE]	Available	at:	https://www.w3.org/TR/charmod-norm/.	[Accessed	

11	February	16].	

Introduction	to	Universal	Acceptance	-	2016	

• ASCII	Characters:	American	Standard	Code	for	Information	Interchange.	These	are	characters	from	

the	basic	 Latin	alphabet	 together	with	 the	European-Arabic	digits.	 These	are	also	 included	 in	 the	

broader	range	of	"Unicode	characters"	that	provides	the	basis	for	IDNs.	

• API:	 An	 Application	 Programming	 Interface	 (API)	 is	 a	 set	 of	 routines,	 protocols,	 and	 tools	 for	

building	 software	and	applications.	An	API	may	be	 for	a	web	based	system,	operating	 system,	or	

database	 system,	 and	 it	 provides	 facilities	 to	 develop	 applications	 for	 that	 system	 using	 a	 given	

programming	language.		

• Brand	Top-level	Domain:	A	Brand	TLD	is	an	innovative	type	of	top	level	domain	name	(TLD)	that	is	

made	possible	 through	the	 implementation	of	 ICANN's	new	gTLD	Program.	A	Brand	TLD	provides	

the	opportunity	for	branded	corporations	to	use	their	corporate	name	as	their	website's	top-level	

identifier	instead	of	using	a	more	traditional	.com	or	.biz	domain	space.	

• ccSLD:	Country	Code	second-level	domain.	

• ccTLD:	 Country	 Code	 top-level	 domain.	 These	 two-letter	 domains	 correspond	 to	 a	 country,	

territory,	or	other	geographic	location.	i.e.	.de	for	Germany,	.us	for	USA.	

• Code	Points:	A	code	point	or	code	position	 is	any	of	the	numerical	values	that	make	up	the	code	

space.	They	are	used	to	distinguish	both,	the	number	from	an	encoding	as	a	sequence	of	bits,	and	

the	abstract	character	from	a	particular	graphical	representation	(glyph).	

• Community	 TLD:	 This	 is	 a	 TLD	 restricted	 to	 a	 specific	 community	 with	 high	 degree	 of	 social	

awareness.	Examples	of	community	TLDs	include:	.catholic,	.thai,	.aarp	

• DNS	Root	Zone:	The	 root	 zone	 is	 the	central	directory	 for	 the	DNS,	which	 is	a	key	component	 in	

translating	readable	host	names	into	numeric	IP	addresses.	

• EAI:	Email	Address	Internationalization.	

• Geographical	TLD:	This	TLD	represents	a	particular	city	or	region;	support	of	the	local	government	is	

required	for	these	TLDs,	examples	include:	.nyc,	.berlin,	.tokyo.	

• FQDN:	A	 fully	 qualified	 domain	 name	 (FQDN)	 also	 referred	 to	 as	 an	absolute	 domain	 name,	 is	 a	
domain	 name	 that	 specifies	 its	 exact	 location	 in	 the	 tree	 hierarchy	 of	 the	Domain	Name	 System	

(DNS).	It	specifies	all	domain	levels,	including	the	top-level	domain	and	the	root	zone.		

• gTLD:	Most	TLDs	with	three	or	more	characters	are	referred	to	as	"generic"	TLDs,	or	"gTLDs".	They	

can	be	subdivided	into	two	types,	"sponsored"	TLDs	(sTLDs)	and	"unsponsored	TLDs	(uTLDs).	

• IANA:	Internet	Assigned	Numbers	Authority.	Its	functions	includes	the	maintenance	of	the	registry	

of	technical	Internet	protocol	parameters;	the	administration	of	certain	responsibilities	associated	

with	Internet	DNS	root	zone	and	the	allocation	of	Internet	numbering	resources.	

• ICANN:	The	 Internet	Corporation	 for	Assigned	Names	 and	Numbers	 (ICANN)	 is	 an	 internationally	

organized,	 non-profit	 corporation	 that	 has	 responsibility	 for	 Internet	 Protocol	 (IP)	 address	 space	

allocation,	 protocol	 identifier	 assignment,	 generic	 (gTLD)	 and	 country	 code	 (ccTLD)	 Top-Level	

Domain	name	system	management,	and	root	server	system	management	functions.	

• IDN:	Internationalized	Domain	Names.	IDNs	are	domain	names	that	include	characters	used	in	the	

local	representation	of	languages	that	are	not	written	with	the	twenty-six	letters	of	the	basic	Latin	

alphabet	"a-z".		

• IDNA:	Internationalized	Domain	Names	in	Applications.	

• IDN	 ccTLD:	 Country	 Code	 Top-level	 Domain	 that	 includes	 characters	 used	 in	 the	 local	

representation	 of	 languages	 that	 are	 nor	 written	 with	 the	 twenty-six	 letters	 of	 the	 basic	 Latin	

alphabet	“a-z”.	For	example,	Russia	.рф	(Russia),	صر.	(Egypt),	السعودية.	(Saudi	Arabia).	
• IESG:	The	 Internet	Engineering	Steering	Group	 (IESG)	 is	 responsible	 for	 technical	management	of	

IETF	activities	and	 the	 Internet	 standards	process.	The	 IESG	 is	directly	 responsible	 for	 the	actions	

associated	 with	 entry	 into	 and	 movement	 along	 the	 Internet	 "standards	 track,"	 including	 final	

approval	of	specifications	as	Internet	Standards.		

Introduction	to	Universal	Acceptance	-	2016	

• IETF:	The	Internet	Engineering	Task	Force	(IETF)	is	a	large	open	international	community	of	network	

designers,	 operators,	 vendors,	 and	 researchers	 concerned	 with	 the	 evolution	 of	 the	 Internet	

architecture	and	the	smooth	operation	of	the	Internet.	It	is	open	to	any	interested	individual.	The	

IETF	develops	 Internet	 Standards	and	 in	particular	 the	 standards	 related	 to	 the	 Internet	Protocol	

Suite	(TCP/IP).		

• Language:	The	method	of	human	communication,	either	spoken	or	written,	consisting	of	the	use	of	

words	in	a	structured	and	conventional	way.	

• Morpheme:	 In	 linguistics,	 a	 morpheme	 is	 the	 smallest	 grammatical	 unit	 in	 a	 language.	 In	 other	

words,	it	is	the	smallest	meaningful	unit	of	a	language.	

• Punycode:	It	is	a	way	to	represent	Unicode	with	the	limited	character	subset	of	ASCII	supported	by	

the	Domain	Name	System.	Punycode	is	intended	for	the	encoding	of	labels	in	the	Internationalized	

Domain	Names	in	Applications	(IDNA)	framework	

• Registrar:	 A	 Registrar	 is	 a	 company	 where	 domain	 names	 are	 registered.	 The	 registrar	 	 keeps	

records	 of	 the	 contact	 information	 and	 submit	 the	 technical	 information	 to	 a	 central	 directory	

known	as	the	"registry."		

• Registry:	A	Registry	 is	 the	authoritative,	master	database	of	all	domain	names	 registered	 in	each	

Top	Level	Domain.		

• RFC:	A	Request	for	Comments	(RFC)	is	a	formal	document	from	the	Internet	Engineering	Task	Force	

(IETF)	that	is	the	result	of	committee	drafting	and	subsequent	review	by	interested	parties.		

• Script:	The	letters	or	characters	used	in	writing.	

• Second-level	domain	name:	 In	the	Domain	Name	System	(DNS)	hierarchy,	a	second-level	domain	

(SLD	 or	 2LD)	 is	 a	 domain	 that	 is	 directly	 below	 a	 top-level	 domain	 (TLD).	 For	 example,	 in	

example.com,	 example	 is	 the	 second-level	 domain	 of	 the	 .com	 TLD.	 Some	 domain	 name	

registries	introduce	a	second-level	hierarchy	to	a	TLD	that	indicates	the	type	of	entity	intended	to	

register	an	SLD	under	it.	For	example,	in	the	.uk	namespace	a	college	or	other	academic	institution	

would	register	under	the	.ac.uk	ccSLD,	while	companies	would	register	under	.co.uk.		
• Sponsored	TLD:	A	sponsored	TLD	is	a	specialized	top-level	domain	that	has	a	sponsor	representing	

a	specific	community	served	by	the	domain.	The	sponsor	carries	out	delegated	policy-formulation	

responsibilities	over	many	matters	concerning	the	TLD.	U-label:	The	Unicode	representation	of	an	

internationalized	domain	name,	i.e.	how	it	is	shown	to	the	end-user.	Contrast	with	A-label.	

• UA-ready	Software:	Universal	Acceptance	Ready	Software.	 It	 is	a	 software	 that	has	 the	ability	 to	

Accept,	Store,	Process,	Validate	and	Display	all	Top	Level	Domains	equally	and	all	 IDNs,	hyperlink	

and	email	addresses	equally.	

• Unicode:	It	is	a	universal	character	encoding	standard.	It	defines	the	way	individual	characters	are	

represented	 in	 text	 files,	 web	 pages,	 and	 other	 types	 of	 documents.	 Unicode	 was	 designed	 to	

support	 characters	 from	 all	 languages	 around	 the	 world.	 It	 can	 support	 roughly	 1,000,000	

characters	and		

• supports	up	to	4	bytes	for	each	character.	

• Unsponsored	 TLD:	Unsponsored	 Top-level	 domains	 are	 intended	 to	 be	 relatively	 large,	 generally	

available	domains	operating	under	policies	established	by	 the	global	 Internet	 community	directly	

through	the	ICANN	process.	Examples	of	unsponsored	TLDs	are	.com,	.net,	.pro,	.org.	

• UTF:	Unicode	Transformation	Format.	 It	 is	a	method	of	converting	Unicode	characters,	which	are	

16	bits	each,	into	7-	or	8-bit	characters.	UTF-7	converts	Unicode	into	ASCII	for	transmission	over	7-

bit	mail	systems,	and	UTF-8	converts	Unicode	to	8-bit	bytes.	

• ZWJ:	Zero-Width	 Joiner	 is	 	 non-printing	 character	 used	 in	 the	 computerized	 typesetting	 of	 some	

complex	scripts	such	as	the	Arabic	script	or	any	Indic	script.	When	placed	between	two	characters	

that	would	otherwise	not	be	connected,	a	ZWJ	causes	them	to	be	printed	in	their	connected	forms.	

Introduction	to	Universal	Acceptance	-	2016	

• ZWNJ:	 Zero-Width	Non-Joiner	 is	 a	 non-printing	 character	 used	 in	 the	 computerization	 of	writing	

systems	that	make	use	of	ligatures.	When	placed	between	two	characters	that	would	otherwise	be	

connected	 into	 a	 ligature,	 a	 ZWNJ	 causes	 them	 to	 be	 printed	 in	 their	 final	 and	 initial	 forms,	

respectively.	This	is	also	an	effect	of	a	space	character,	but	a	ZWNJ	is	used	when	it	 is	desirable	to	

keep	the	words	closer	together	or	to	connect	a	word	with	its	morpheme.	

	

Cross-link	to	RFCs	
	

RFC3492	(Punycode)			
• Punycode:	A	Bootstring	encoding	of	Unicode	for	Internationalized	Domain	Names	in	

Applications	(IDNA)	

The	RFC3492	describes	Punycode	as	"a	simple	and	efficient	transfer	encoding	syntax	designed	for	use	with	
Internationalized	Domain	Names	 in	Applications	 (IDNA)"11	 	 Punycode	 transforms	uniquely	and	 reversibly	a	
Unicode	string	into	an	ASCII	string.	This	RFC	defines	a	general	algorithm	called	"Bootstring".	This	algorithm	
allows	a	string	of	basic	code	points	to	uniquely	represent	any	string	of	code	points	drawn	from	a	larger	set.	
Go	to	RFC	3492:	https://www.ietf.org/rfc/rfc3492.txt	

RFC5890-94	(IDN)	
o RFC5890:	 Internationalized	 Domain	 Names	 for	 Applications	 (IDNA):	 Definitions	 and	

Document	Framework	

This	 RFC	 describes	 the	 usage	 context	 and	 protocol	 for	 a	 revision	 of	 Internationalized	 Domain	 Names	 for	

Applications	(IDNA).	Go	to	RFC	5890:	https://tools.ietf.org/html/rfc5890	

o RFC5891:	Internationalized	Domain	Names	in	Applications	(IDNA)	Protocol	

This	RFC	specifies	the	protocol	mechanism,	called	 Internationalized	Domain	Names	 in	Applications	 (IDNA),	

for	registering	and	looking	up	IDNs	in	a	way	that	does	not	require	changes	to	the	DNS	itself.	Go	to	RFC	5891:	

https://tools.ietf.org/html/rfc5891	

o RFC5892:	 The	 Unicode	 Points	 and	 Internationalized	 Domain	 Names	 for	 Applications	
(IDNA)	

The	RFC	5892	specifies	 rules	 for	deciding	whether	a	 code	point,	 considered	 in	 isolation	or	 in	 context,	 is	a	

candidate	 for	 inclusion	 in	 an	 Internationalized	 Domain	 Name	 (IDN).	 Go	 to	 RFC	 5892:	

https://tools.ietf.org/html/rfc5892	

o RFC5893:	 Right-to-left	 scripts	 for	 Internationalized	 Domain	 Names	 for	 Applications	
(IDNA)		

This	RFC	provides	a	new	Bidi	rule	for	Internationalized	Domain	Names	for	Applications	(IDNA)	labels,	for	the	

use	 of	 right-to-left	 scripts	 in	 Internationalized	 Domain	 Names.	 Go	 to	 RFC	 5893:	

https://tools.ietf.org/html/rfc5893	

o RFC5894:	 Internationalized	 Domain	 Names	 for	 Applications	 (IDNA):	 Background,	
Explanation	and	Rationale	

																																																																				
11
	A.	Costello.	2003.	IETF	Network	Working	Group	https://www.ietf.org/rfc/rfc3492.txt	

Introduction	to	Universal	Acceptance	-	2016	

This	 informational	 document	 provides	 an	 overview	 of	 a	 revised	 system	 to	 deal	 with	 newer	 versions	 of	

Unicode	 and	 provides	 explanatory	 material	 for	 its	 components.	 Go	 to	 RFC	 5894:	

https://tools.ietf.org/html/rfc5894	

o RFC	 5895:	 Mapping	 Characters	 for	 Internationalized	 Domain	 Names	 in	 Applications	

(IDNA)	2008	

This	RFC	describes	the	actions	that	can	be	taken	by	an	implementation	between	receiving	user	input	and	

passing	permitted	code	points	to	the	new	IDNA	protocol	(2008).	It	describes	an	operation	that	is	to	be	

applied	to	user	input	in	order	to	prepare	that	user	input	for	use	in	an	"on	the	network"	protocol.	It	also	

includes	a	general	implementation	procedure	for	mapping.	Go	to	RFC	5895:	

https://tools.ietf.org/html/rfc5895	

	

RFC6530-33	(EAI)	
o RFC	6530:	Overview	and	Framework	for	Internationalized	Email	

This	standard	introduces	a	series	of	specifications	that	define	mechanisms	and	protocol	extensions	needed	

to	 fully	 support	 internationalized	 email	 addresses.	 This	 document	 describes	 how	 the	 various	 elements	 of	

email	 internationalization	 fit	 together	 and	 the	 relationships	 among	 the	 primary	 specifications	 associated	

with	message	transport,	header	formats,	and	handling.	Go	to	RFC	6530:	https://tools.ietf.org/html/rfc6530	

o RFC	6531:	SMTP	Extension	for	Internationalized	Email	

The	 document	 defines	 a	 Simple	 Mail	 Transfer	 Protocol	 extension	 so	 servers	 can	 advertise	 the	 ability	 to	

accept	 and	 process	 internationalized	 email	 addresses	 and	 internationalized	 email	 headers.	 Go	 to	

RFC6531:https://tools.ietf.org/html/rfc6531	

o RFC	6532:	Internationalized	Email	Headers	

This	document	specifies	an	enhancement	to	the	Internet	Message	Format	and	to	MIME	that	allows	use	of	

Unicode	in	mail	addresses	and	most	header	field	content.	This	document	specifies	an	enhancement	to	the	

Internet	Message	 Format	 [RFC5322]	 and	 to	MIME	 that	 permits	 the	 direct	 use	 of	 UTF-8,	 rather	 than	 only	

ASCII,	 in	 header	 field	 values,	 including	mail	 addresses.	 A	 new	media	 type,	message/global,	 is	 defined	 for	

messages	 that	 use	 this	 extended	 format.	 This	 specification	 also	 lifts	 the	MIME	 restriction	 on	 having	 non-

identity	 content-transfer-encodings	on	any	 subtype	of	 the	message	 top-level	 type	 so	 that	message/global	

parts	 can	 be	 safely	 transmitted	 across	 existing	 mail	 infrastructure.	 Go	 to	 RFC6532:	

https://tools.ietf.org/html/rfc6532	

o RFC	6533:	Internationalized	Delivery	Status	and	Disposition	Notifications	

This	specification	adds	a	new	address	type	for	international	email	addresses	so	an	original	recipient	address	

with	non-ASCII	 characters	 can	be	correctly	preserved	even	after	downgrading.	This	also	provides	updated	

content	return	media	types	for	delivery	status	notifications	and	message	disposition	notifications	to	support	

use	of	the	new	address	type.	Go	to	RFC6533:	https://tools.ietf.org/html/rfc6533	

	

ISO	10646	(Unicode)	
	

To	provide	a	common	technical	basis	for	the	processing	of	electronic	information	in	various	languages,	the	

International	Organization	for	Standardization	(ISO)	has	developed	an	 international	coding	standard	called	

ISO	10646.	The	ISO	10646	provides	a	unified	standard	for	the	coding	of	characters	in	all	major	languages	in	

Introduction	to	Universal	Acceptance	-	2016	

the	 world	 including	 traditional	 and	 simplified	 Chinese	 characters.	 This	 large	 character	 set	 is	 called	 the	

Universal	Character	Set	(UCS).	The	same	set	of	characters	is	defined	by	the	Unicode	standard,	which	further	

defines	additional	character	properties	and	other	application	details	of	great	interest	to	implementers.	

Unicode	 is	 a	 character	 coding	 system	 designed	 by	 the	 Unicode	 Consortium	 to	 support	 the	 interchange,	

processing	 and	 display	 of	 the	 written	 texts	 of	 all	 major	 languages	 in	 the	 world.	 ISO	 10646	 and	 Unicode	

define	several	encoding	forms	of	their	common	repertoire:	UTF-8,	UCS-2,	UTF-16,	UCS-4	and	UTF-32.		

	

GB18030	(China)	
	

GB	 18030-2000	 is	 a	 Chinese	 government	 standard	 that	 specifies	 an	 extended	 code	 page	 for	 use	 in	 the	

Chinese	 market.	 The	 internal	 processing	 code	 for	 the	 character	 repertoire	 can	 and	 should	 be	 Unicode;	

however,	 the	standard	stipulates	that	software	providers	must	guarantee	a	successful	round-trip	between	

GB18030	and	the	internal	processing	code.	All	products	currently	sold	or	to	be	sold	in	China	must	plan	the	

code	page	migration	 to	support	GB18030	without	exception.	GB18030	 is	a	"mandatory	standard"	and	the	

Chinese	government	regulates	the	certification	process	to	reinforce	GB18030	deployment.		

Unicode	Technical	Standard	#46:	Unicode	IDNA	Compatibility	Processing	
This	specification	defines	a	mapping	consistent	with	the	normative	requirements	of	the	IDNA2008	protocol,	

and	which	is	as	compatible	as	possible	with	IDNA2003.	For	client	software,	this	provides	behavior	that	is	the	

most	 consistent	with	 user	 expectations	 about	 the	handling	of	 domain	names	with	 existing	 data.	 To	 learn	

more	go	to:	http://unicode.org/reports/tr46/	

		

	Online	resources	
• Windows	APIs	

https://www.msdn.microsoft.com/enus/library/windows/desktop/ff818516%28v=vs.85%29.as

px			

• SharePoint	APIs	https://msdn.microsoft.com/en-us/library/office/jj860569.aspx	

• Public	Suffix	List	https://publicsuffix.org/list/public_suffix_list.dat	

• ICANN	Authoritative	TLD	list		http://data.iana.org/TLD/tlds-alpha-by-domain.txt	

• Android	APIs	http://developer.android.com/guide/index.html	

• OS	APIs	https://developer.apple.com/library/mac/navigation/	

• Unicode	Security	considerations	http://www.unicode.org/reports/tr36/	
• Unicode	security	mechanisms	http://www.unicode.org/reports/tr39/ 	
• For	more	details	on	Unicode	character	groupings,	read	the	following:	

• Unicode	planes	http://en.wikipedia.org/wiki/Mapping_of_Unicode_character_planes 	
• Overview	of	GB18030	

• Authoritative	mapping	table	between		BG18038-2000	and	Unicode:	http://source.icu-

project.org/repos/icu/data/trunk/charset/data/xml/gb-18030-2000.xml	

• GB18030	FAQ	-	Unicode normalization	
• http://unicode.org/reports/tr36/#UTF-8_Exploit	

• Unicode.org	for	security	exploits	

• .NET	Framework	4.5	and	higher	

• URIs	-	http://tools.ietf.org/html/rfc3986	

• http://www.internic.net/faqs/authoritative-dns.html	

• M3AAWG	Best	Practices	for	Unicode	Abuse	Prevention:	

Introduction	to	Universal	Acceptance	-	2016	

https://www.m3aawg.org/sites/default/files/m3aawg-unicode-best-practices-2016-02.pdf		

• M3AAWG	Unicode	Abuse	Overview	and	Tutorial:	

https://www.m3aawg.org/sites/default/files/m3aawg-unicode-tutorial-2016-02.pdf			

	

Acknowledgements	
	

**Please	provide	me	your	names	

	

