DNSSEC Encryption Algorithm Agility

ICANN 56 DNSSEC Workshop June 27, 2016 Helsinki, Finland

Dan York, Internet Society

DNSSEC Algorithms

- Used to generate keys for signing
 - DNSKEY
- Used in DNSSEC signatures
 - RRSIG
- Used for DS record for chain of trust
 - DS
- Used in validation of DNSSEC records

IANA Registry of DNSSEC Algorithm Numbers

http://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml

Number 0	Description Reserved	Mnemonic
1	RSA/MD5 (deprecated)	RSAMD5
2	Diffie-Hellman	DH
3	DSA/SHA1	DSA
4	Reserved	DSA
5	RSA/SHA-1	RSASHA1
6	DSA-NSEC3-SHA1	DSA-NSEC3-SHA1
7	RSASHA1-NSEC3-SHA1	RSASHA1-NSEC3-SHA1
8	RSA/SHA-256	RSASHA256
9	Reserved	DO A OLIA 540
10	RSA/SHA-512	RSASHA512
11	Reserved	
12	GOST R 34.10-2001	ECC-GOST
13	ECDSA Curve P-256 wSHA-256	ECDSAP256SHA256
14	ECDSA Curve P-384 wSHA-384	ECDSAP384SHA384
15-122	Unassigned	
123-251	Reserved	
252	Reserved for Indirect Keys	INDIRECT
253	private algorithm	PRIVATEDNS
254	private algorithm OID	PRIVATEOID
255	Reserved	

Elliptic Curve DNSSEC Algorithms

ECDSA – RFC 6605 – April 2012

Under development:

- Ed25519:
 - draft-ietf-curdle-dnskey-ed25519
- Ed448
 - draft-sury-dnskey-ed448

(See "New Curves in DNSSEC" from ICANN 55)

Why Do We Care About Newer Algorithms?

Faster!

- Signing
- Validation

Smaller keys and signatures

- Packet size (and avoiding fragmentation)
- Minimizing potential reflection/DDoS attacks

Better cryptography

Move away from 1024-bit RSA

Aspects of Deploying New Algorithms

- Validation
- Signing / DNS Hosting Operators
- Registries
- Registrars
- Developers

(See ICANN 55 Marrakech DNSSEC Workshop archives for more information.)

Discussions To Date

- Mar 2016 ICANN 55 DNSSEC Workshop, Marrakech
- Apr 2016 DNS-OARC Workshop, Buenos Aires
- Apr 2016 IETF 95, Buenos Aires Discussion in CURDLE and DNSOP working groups
- May 2016 RIPE 72 session, Copenhagen
- Jun 2016 ICANN 56 DNSSEC Workshop, Helsinki

- Internet-Draft
 - draft-york-dnsop-deploying-dnssec-crypto-algs

What Have We Learned?

A conversation with Ondřej Surý

Next Steps

- Help people understand value and need to support new algorithms
- Document these steps in a form that can be distributed (ex. Internet-draft)

• ?

 Need to start NOW as it will take several years to deploy...

Dan York

Senior Content Strategist Internet Society

york@isoc.org

Thank You!

