How It Works: DNS Fundamentals

ICANN COMMUNITY FORUM 61

SAN JUAN 10–15 March 2018 ○ IP addresses easy for machines but hard for people
 ○ IPv4: 192.0.2.7
 ○ IPv6: 2001:db8::7

- ⊙ People need to use names
- In the early days of the Internet, names were simple
 - ⊙ No domain names yet
 - ⊙ "Single-label names", 24 characters maximum
 - ⊙ Referred to as *host names*

- Mapping names to IP addresses to names is *name resolution*
- Name resolution on the early Internet used a *host file* named HOSTS.TXT
 - Same function but slightly different format than the familiar /etc/hosts
- Centrally maintained by the NIC (Network Information Center) at the Stanford Research Institute (SRI)
 - Network administrators sent updates via email
- $\odot\,$ Ideally everyone had the latest version of the file
 - ⊙ Released once per week
 - ⊙ Downloadable via FTP

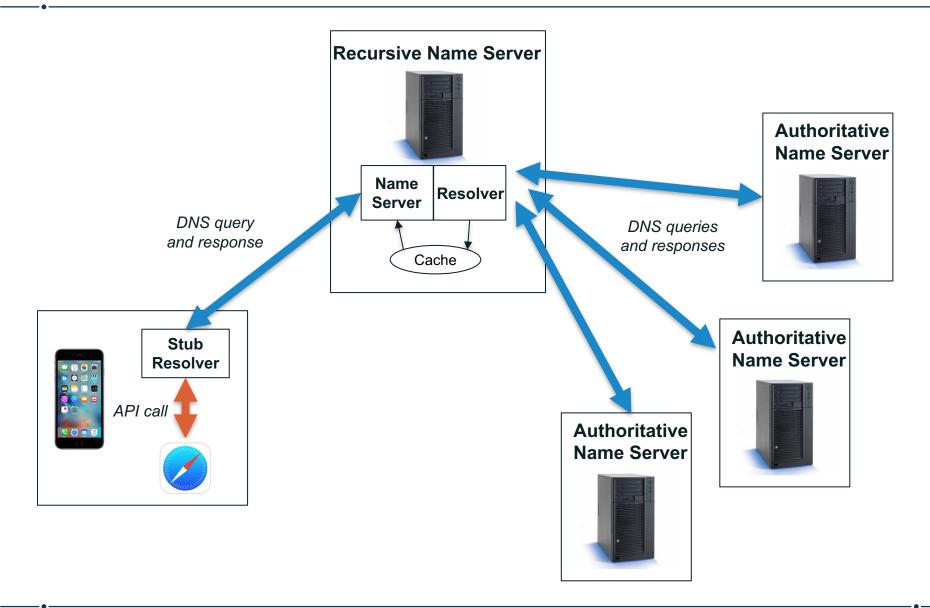
⊙ Naming contention

- Edits made by hand to a text file (no database)
- No good method to prevent duplicates
- ⊙ Synchronization
 - $\odot\,$ No one ever had the same version of the file
- ⊙ Traffic and load
 - ⊙ Significant bandwidth required just to download the file

⊙ A centrally maintained host file just didn't scale

⊙ Discussion started in the early 1980s on a replacement

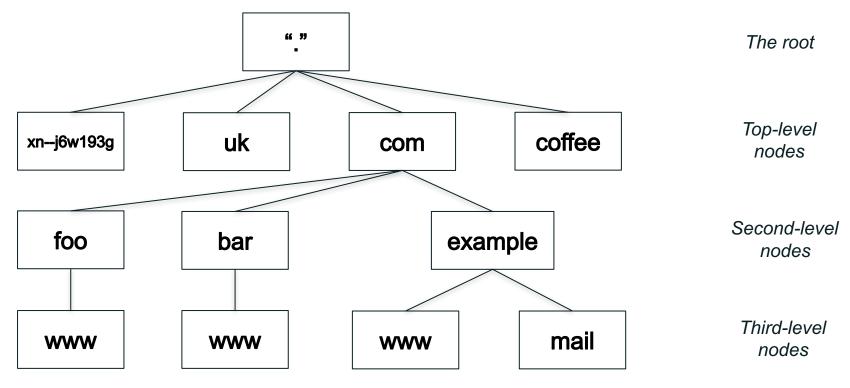
- ⊙ Address HOST.TXT scaling issues
- \odot Simplify email routing
- ⊙ Result was the *Domain Name System*
- Requirements in multiple documents:
 RFC 799, "Internet Name Domains"
 RFC 819, "The Domain Naming Convention for Internet User Applications"



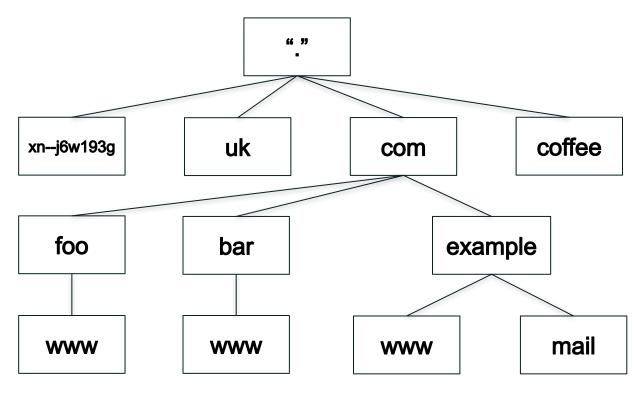
\odot DNS is a distributed database

- \odot Data is maintained locally but available globally
- Resolvers send queries
- ⊙ *Name servers* answer queries
- ⊙ Optimizations:
 - \odot Caching to improve performance
 - Replication to provide redundancy and load distribution

DNS Components at a Glance

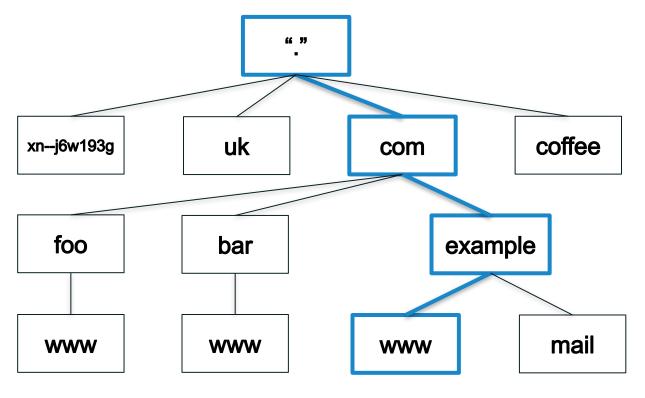


The Name Space

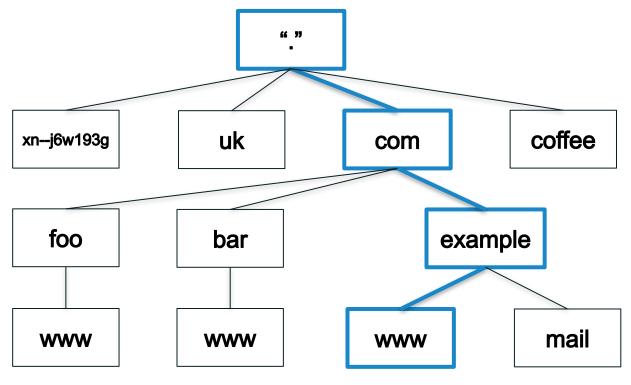

 DNS database structure is an inverted tree called the *name space*

- ⊙ Each node has a label
- \odot The root node (and only the root node) has a null label

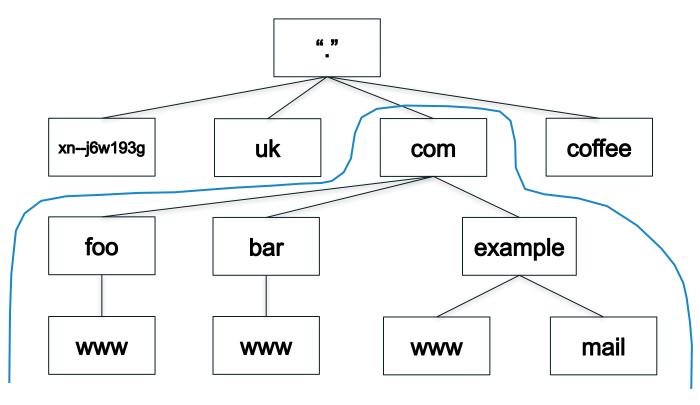
Label Syntax


- Legal characters for labels are "LDH" (letters, digits, hyphen)
- ⊙ Maximum length 63 characters
- Comparisons of label names are not case sensitive

Domain Names

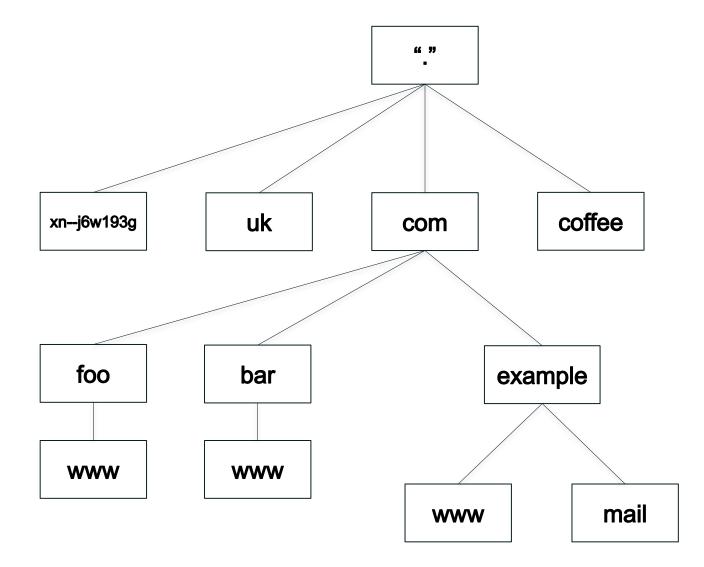

- ⊙ Every node has a *domain name*
- Sequence of labels from the node to the root separated by dots
- ⊙ Highlighted: www.example.com.

Fully Qualified Domain Names

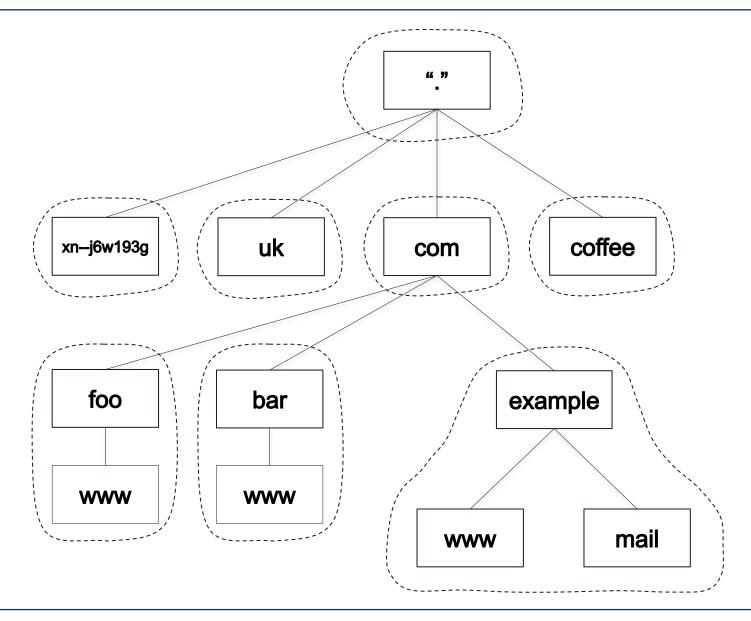

- A *fully qualified domain name (FQDN)* unambiguously identifies a node
 - $\odot\,$ Not relative to any other domain name
- ⊙ An FQDN ends in a dot
- Example FQDN: www.example.com.

Domains

- A *domain* is a node and everything below it (its descendants)
- ⊙ The top node of a domain is the *apex* of that domain
- ⊙ Shown: the *com* domain



- The name space is divided up to allow distributed administration
- Administrative divisions are called *zones*
- **Delegation** creates zones
 - Delegating zone is the *parent*
 - o Created zone is the child



The Name Space

Zones are Administrative Boundaries

Delegation Creates Zones

- Name servers answer queries
- A name server *authoritative* for a zone has complete knowledge of that zone
 - Can provide a definitive answer to queries about the zone
- Zones should have multiple authoritative servers
 - Provides redundancy
 - Spreads the query load

Authoritative Server Synchronization

- How do you keep a zone's data in sync across multiple authoritative servers?
- Fortunately zone replication is built into the DNS protocol
- A zone's *primary* name server has the definitive zone data
 - Changes to the zone are made on the primary
- A zone's secondary or slave server retrieves the zone data from another authoritative server via a zone transfer
 - The server it retrieves from is called the *master server*
 - Master server is usually the primary but doesn't have to be
- Zone transfer is initiated by the secondary
 - Secondary polls the master periodically to check for changes
 - The master also notifies the primary of changes
 - RFC 1996, "A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY)"

- The DNS standard specifies the format of DNS packets sent over the network
 - o Informally called "wire format"
- The standard also specifies a text-based representation for DNS data called *master file format*
- A *zone file* contains all the data for a zone in master file format

- Recall every node has a domain name
- A domain name can have different kinds of data associated with it
- That data is stored in *resource records*
 - Sometimes abbreviated as *RRs*
- \odot Different record types for different kinds of data

- A zone consists of multiple resource records
- All the resource records for a zone are stored in a *zone file*
- Every zone has (at least) one zone file
- Resource records from multiple zones are never mixed in the same file

- Resource records have five fields:
 - **Owner**: Domain name the resource record is associated with
 - *Time to live (TTL)*: Time (in seconds) the record can be cached
 - o Class: A mechanism for extensibility that is largely unused
 - *Type*: The type of data the record stores
 - **RDATA**: The data (of the type specified) that the record carries

• Resource record syntax in master file format:

[owner] [TTL] [class] type RDATA

- Fields in brackets are optional
 - Shortcuts to make typing zone files easier on humans
- Type and RDATA always appear

- A IPv4 address
- AAAA IPv6 address
- **NS** Name of an authoritative name server
- **SOA** "Start of authority", appears at zone apex
- **CNAME** Name of an alias to another domain name
- MX Name of a "mail exchange server"
- **PTR** IP address encoded as a domain name (for reverse mapping)

- There are many other resource record types
- 84 types allocated as of December, 2017
- IANA "DNS Resource Record (RR) TYPE Registry" under "Domain Name System (DNS) Parameters"
 - http://www.iana.org/assignments/dns-parameters/dnsparameters.xhtml#dns-parameters-4

IANA DNS Resource Record (RR) TYPE Registry

🚯 www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-4 🤍 🗊 📿 🔍 Search 😭 🖨							•	Â	ø	◙	
Resource	Record (RR)	TYPEs									
	5][RFC1035]										
vailable Form	ats										
Decimal 🗵	Hex 🗵	Registration Procedures	I					Note	I		
0	0x0000	•		<u>C2931], [RFC4034]</u> a	nd in other circumstances and must n	ever be					
1-127	0x0000-0x007F	F DNS RRTYPE Allocation Policy					data TYPEs				
128-255	0x0080-0x00FF	DNS RRTYPE Allocation Policy				Q TYPEs, Meta TYPEs					
256-61439	0x0100-0xEFFF	DNS RRTYPE Allocation Policy					data RRTYPEs				
61440-65279	0xF000-0xFEFF	IETF Review									
65280-65534	0xFF00-0xFFFE	Reserved for Private Use									
65535	0xFFFF	Reserved (Standards Action)									
TYPE 🗵	Value 🔟	Meaning 🔟	Reference		Template 🗵				legisti)ate 🛐		
A	1	a host address	[RFC1035]							-	
NS	2	an authoritative name server	[RFC1035]								
MD	3	a mail destination (OBSOLETE - use MX)	[RFC1035]								
MF	4	a mail forwarder (OBSOLETE - use MX)	[RFC1035]								
CNAME	5	the canonical name for an alias	[RFC1035]								
SOA	6	marks the start of a zone	[RFC1035]								

Address Records

- Most common use of DNS is mapping domain names to IP addresses
- Two most common types of resource records are:
 - Address (A) record stores an IPv4 address

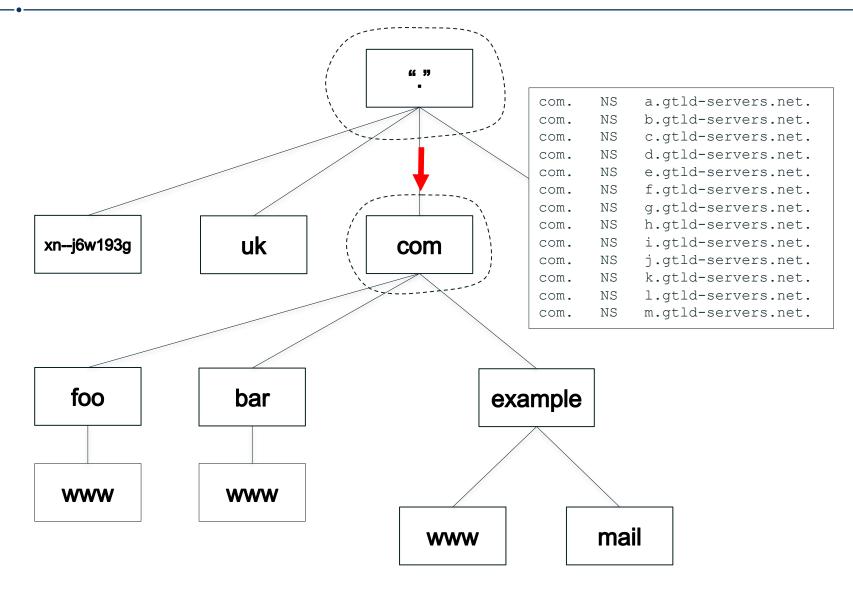
example.com. A 192.0.2.7

o "Quad A" (AAAA) record stores an IPv6 address

example.com. AAAA 2001:db8::7

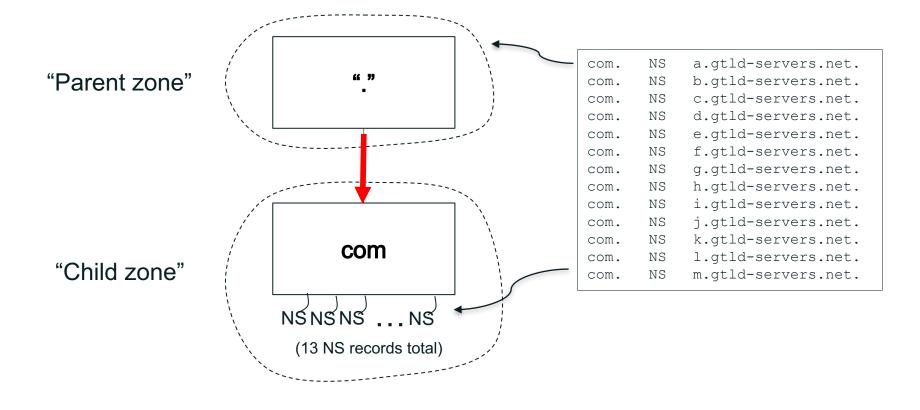
- Most types are used by consumers of DNS
 - A, AAAA and almost everything else
- ⊙ Some types are used mostly by DNS itself
 - NS, SOA
- DNS is like a warehouse
 - NS and SOA are the shelves you build...
 - ...so you can store stuff you care about (A, AAAA, etc.) in the warehouse

Name Server (NS)

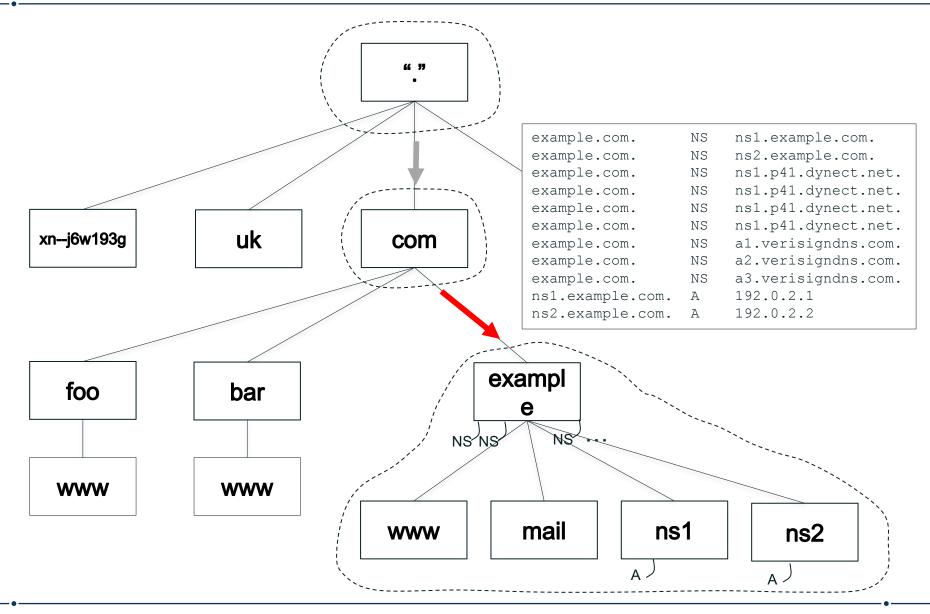

- \odot Specifies an authoritative name server for a zone
- \odot The only record type to appear in two places
 - o "Parent" and "child" zones

example.com. NS nsl.example.com. example.com. NS nsl.example.com.

- ⊙ Left hand side is the name of a zone
- Right hand side is the name of a name server
 Not an IP address!



NS Records Mark Delegations



NS Records Appear in Two Places

More Delegation, Including Glue

- A glue record is:
 - An A or AAAA record
 - Included in the parent zone as part of the delegation information
- Glue is needed to break a circular dependency
 - When the name of the name server ends in the name of the zone being delegated

example.com. NS nsl.example.com.

• Also for breaking for complicated dependencies not described here

- \odot One and only one SOA record per zone
- At the zone apex
- Most values control zone transfers

```
example.com. SOA ns1.example.com. hostmaster.example.com. (
2016050100 ; serial
3600 ; refresh (1 hour)
600 ; retry (10 minutes)
2592000 ; expire (4 weeks 2 days)
300 ; minimum (5 minutes)
)
```


- The CNAME record creates an alias from one domain name to another
 - $\circ~$ Left side is the alias
 - Right side is a canonical name, the "target" of the alias

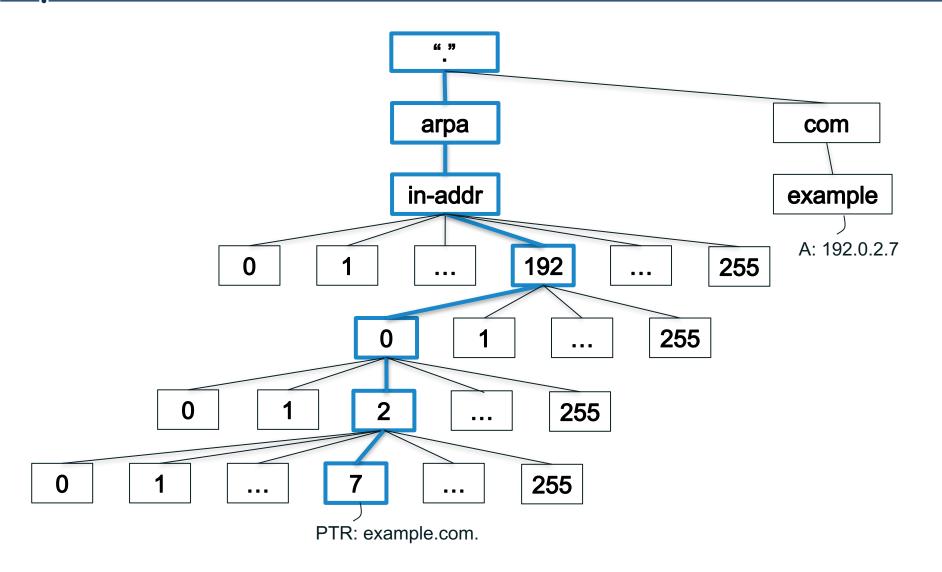
mail.example.com. CNAME some-host.example.com.

- Remember: a CNAME creates an alias and points to a canonical name
 - Any other record type creates a canonical name
- Don't use aliases on the right side of other records (e.g., NS, MX)
- A CNAME can point to another CNAME
 - But avoid long chains and loops

- The problem: where does mail for *user@example.com* go?
- In the old days: look up the address of *example.com*, deliver via SMTP to that address
 - No flexibility: domain name in email address must be a mail server
 - Not a problem in HOST.TXT days: email address meant user@host
 - But what if email address is a host not on the Internet?
 - E.g., UUCP
- DNS offered more flexibility
- MX (Mail Exchange) records de-couple the mail server from the email address

• Specifies a mail server and a preference for a mail destination

example.com. MX 10 mail.example.com. example.com. MX 20 mail-backup.example.com.


- Owner name corresponds to the domain name in an email address, i.e., to the right of the "@"
- The number is a preference, lower is more desirable
- Rightmost field is the domain name of a mail server that accepts mail for the domain in the owner name

- Name-to-IP is "forward" mapping
- IP-to-name is "reverse" mapping
- Reverse mapping accomplished by mapping IP address space to the DNS name space
 - IPv4 addresses under in-addr.arpa
 - IPv6 addresses under *ip6.arpa*
- Uses PTR (pointer) records
 - 7.2.0.192.in-addr.arpa. PTR example.com.
- Corresponds to this A record:
 - example.com. A 192.0.2.7

Reverse Mapping

DNSSEC (DNS Security Extensions)

- DNS data can be digitally signed for authentication
 - Origin authentication and data integrity
- Each zone has a public/private key pair
 - No certificate authorities: a parent zone vouches for its child's public key
- Several record types:
 - **DNSKEY**: public key for a zone
 - **RRSIG**: digital signature for a resource record set (RRset)
 - NSEC/NSEC3: pointer to the "next" name in a zone (provides authenticated denial of existence)
 - DS: delegation signer, resides in a parent zone and stores the hash of a child zone's public key

A Sample of More Resource Record Types

● **TXT**

Arbitrary text

⊙ URI, NAPTR

○ Map domain names to URIs ○

• TLSA

 Used by DANE (DNSSEC Authentication of Named Entities) to associate X.509 certificates with a domain name

○ CDS, CDNSKEY, CSYNC

Child-parent synchronization

⊙ X25, ISDN, ATMA

 Addresses for non-IP networking protocols

LOC, GPOS

- Location information
- …and many more, either obsolete or little-used

- The type space is 16 bits, i.e., 65535 possible resource record types
 A portion is reserved for private use
- New types are added regularly
- How does a server handle types it doesn't recognize?
 - The old days: it didn't. You lose.
 - Since 2003: RFC 3597, "Handling of Unknown DNS Resource Record (RR) Types" specifies treating unknown types as opaque blobs of data

Sample Zone File: example.com

example.com.	SOA	<pre>nsl.example.com. hostmaster.example.com. (2016050100 ; serial 3600 ; refresh (1 hour) 600 ; retry (10 minutes) 2592000 ; expire (4 weeks 2 days) 300) ; minimum (5 minutes)</pre>	
example.com.	NS	nsl.example.com.	
example.com.	NS	ns2.example.com.	
example.com.	NS	nsl.p41.dynect.net.	
example.com.	NS	ns1.p41.dynect.net.	
example.com.	NS	ns1.p41.dynect.net.	
example.com.	NS	nsl.p41.dynect.net.	
example.com.	NS	al.verisigndns.com.	
example.com.	NS	a2.verisigndns.com.	
example.com.	NS	a3.verisigndns.com.	
example.com.	А	192.0.2.7	
example.com.	AAAA	2001:db8::7	
example.com.	MX	10 mail.example.com.	
example.com.	MX	20 mail-backup.example.com.	
www.example.com.	CNAME	example.com.	
nsl.example.com.	А	192.0.2.1	
ns2.example.com.	А	192.0.2.2	

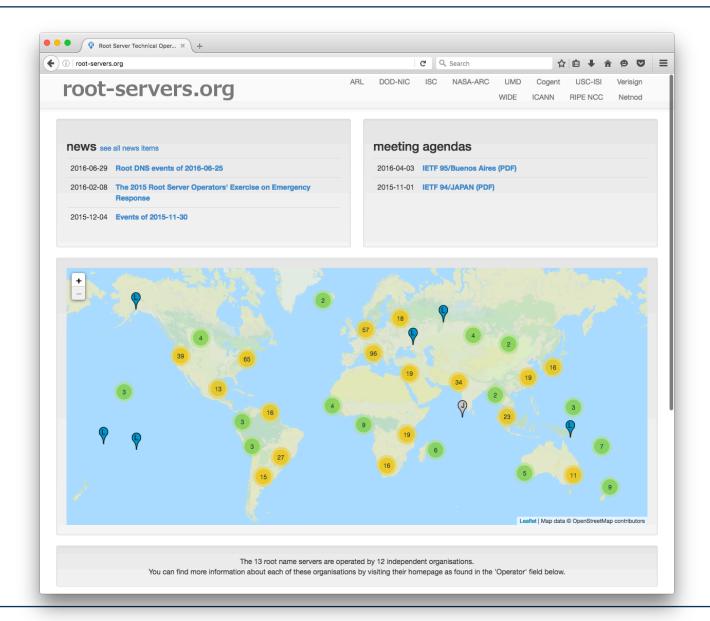
- Stub resolvers, recursive name servers and authoritative name servers cooperate to look up DNS data in the name space
- A DNS query always comprises three parameters:
 - Domain name, class, type
 - E.g., www.example.com, IN, A
- Two kinds of queries:
 - Stub resolvers send *recursive* queries
 - "I need the complete answer or an error."
 - Recursive name servers send *non-recursive* or *iterative* queries
 - "I can do some of the lookup work myself and will accept a referral."

- High-level algorithm for processing a query:
 - Answer exact match from local data (authoritative or cache), if possible
 - If no exact answer possible, walk up the name space tree in local data from the queried name to find the best match, the closest enclosing zone
 - Is it a recursive query?
 - Send the query to a name server for the *closest enclosing zone*
 - Keep following referrals down the tree until the zone with the answer (which could be "doesn't exist")
 - Is it a non-recursive query?
 - Return a referral to the closest enclosing zone

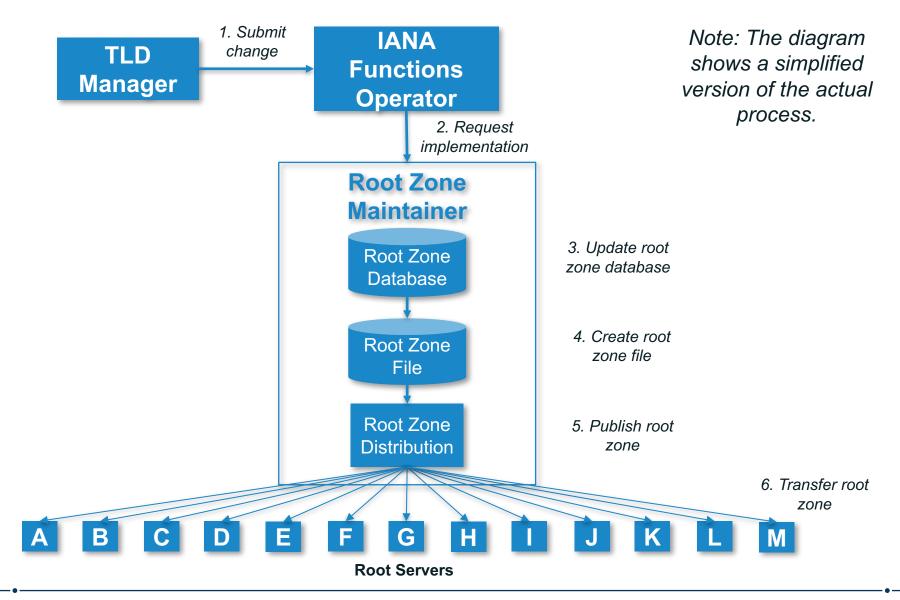
- How do you start the resolution process if there's no local data?
 - Empty cache, or
 - Not authoritative for any zones
- No choice but to start at the root zone
 - The root name servers are the servers authoritative for the root zone
- How does a name server find the root name servers?
 - They must be configured
 - No way to discover them
- The *root hints file* contains the names and IP addresses of the root name servers
 - o http://www.internic.net/domain/named.root

List of Root Name Servers and Root Hints File

	NS	a.root-servers.net.
	NS	b.root-servers.net.
	NS	c.root-servers.net.
	NS	d.root-servers.net.
	NS	e.root-servers.net.
	NS	f.root-servers.net.
	NS	g.root-servers.net.
	NS	h.root-servers.net.
	NS	i.root-servers.net.
	NS	j.root-servers.net.
	NS	k.root-servers.net.
	NS	l.root-servers.net.
	NS	m.root-servers.net.
a.root-servers.net.	A	198.41.0.4
b.root-servers.net.	A	192.228.79.201
c.root-servers.net.	A	192.33.4.12
d.root-servers.net.	A	199.7.91.13
e.root-servers.net.	A	192.203.230.10
f.root-servers.net.	A	192.5.5.241
g.root-servers.net.	A	192.112.36.4
h.root-servers.net.	A	198.97.190.53
i.root-servers.net.	A	192.36.148.17
j.root-servers.net.	A	192.58.128.30
k.root-servers.net.	A	193.0.14.129
l.root-servers.net.	А	199.7.83.42
m.root-servers.net.	A	202.12.27.33
a.root-servers.net.	AAAA	2001:503:ba3e::2:30
b.root-servers.net.	AAAA	2001:500:84::b
c.root-servers.net.	AAAA	2001:500:2::c
d.root-servers.net.	AAAA	2001:500:2d::d
e.root-servers.net.	AAAA	2001:500:a8::e
f.root-servers.net.	AAAA	2001:500:2f::f
h.root-servers.net.	AAAA	2001:500:1::53
i.root-servers.net.	AAAA	2001:7fe::53
j.root-servers.net.	AAAA	2001:503:c27::2:30
k.root-servers.net.	AAAA	2001:7fd::1
l.root-servers.net.	AAAA	2001:500:9f::42
m.root-servers.net.	AAAA	2001:dc3::35


- \odot Administration of the root zone is complicated
- Two organizations cooperate to administer the zone's contents
 - ICANN (IANA Functions Operator)
 - Verisign (Root Zone Maintainer)
- Twelve organizations operate authoritative name servers for the root zone

- **A** Verisign
- **B** University of Southern California Information Sciences Institute
- **C** Cogent Communications, Inc.
- **D** University of Maryland
- E United States National Aeronautics and Space Administration (NASA) Ames Research Center
- **F** Information Systems Consortium (ISC)
- G United States Department of Defense (US DoD)
 Defense Information Systems Agency (DISA)
- **H** United States Army (Aberdeen Proving Ground)
- I Netnod Internet Exchange i Sverige
- ⊙ J Verisign
- **K** Réseaux IP Européens Network Coordination Centre (RIPE NCC)
- L Internet Corporation For Assigned Names and Numbers (ICANN)
- M WIDE Project (Widely Integrated Distributed Environment)



The root-servers.org Web Site

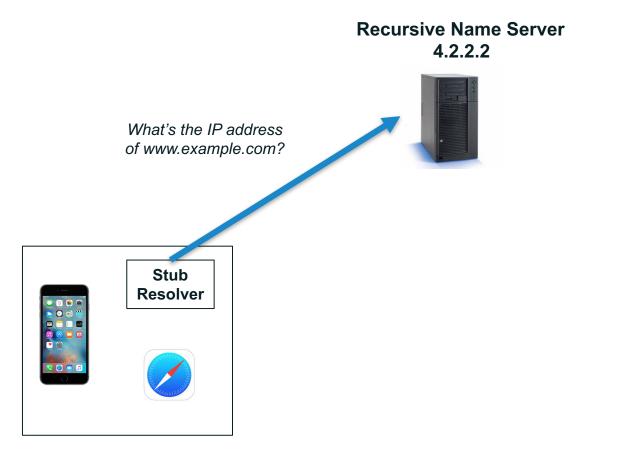
Root Zone Change Process

The phone is configured to send queries to the recursive name server with IP address 4.2.2.2

Recursive Name Server 4.2.2.2

4.2.2.2 is a recursive server run by Level 3 Communications

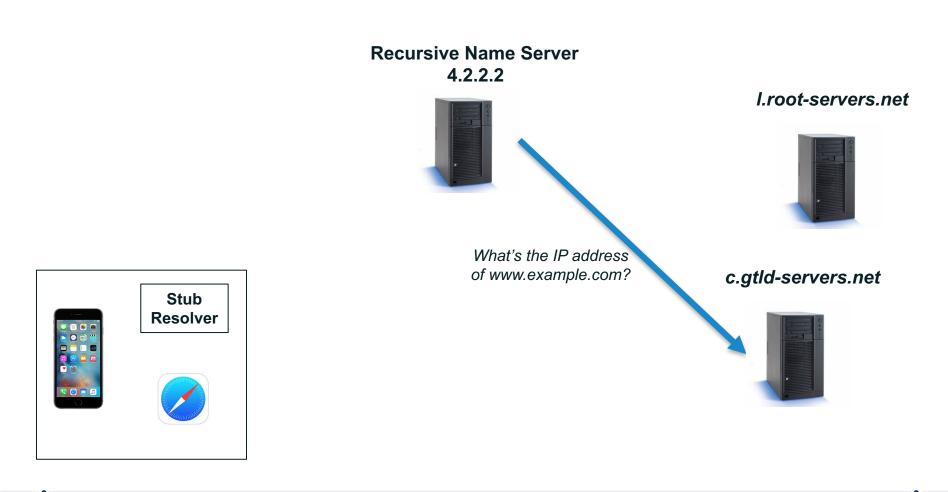
A user types *www.example.com* into Safari on her phone Safari calls the stub resolver function to resolve the name

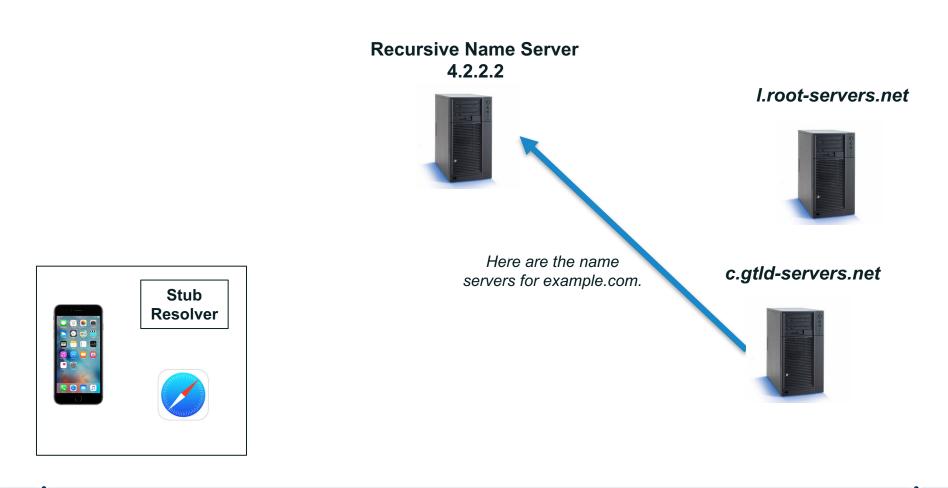

> Recursive Name Server 4.2.2.2

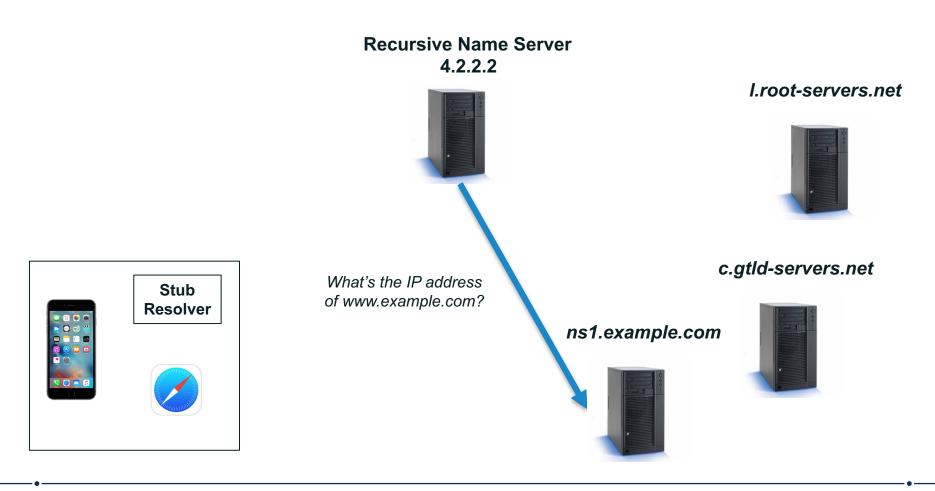
The phone's stub resolver sends a query for *www.example.com*, IN, A to 4.2.2.2

Empty cache, so recursive server queries a root server

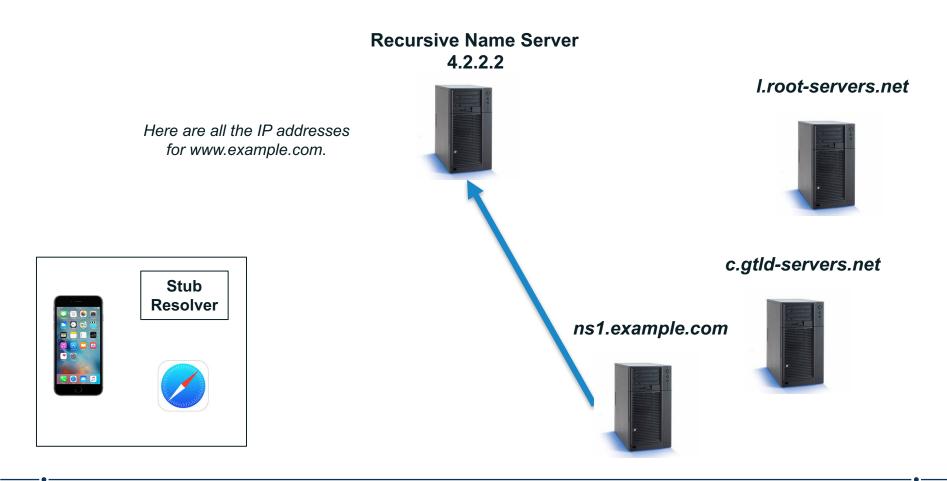
Recursive Name Server 4.2.2.2 What's the IP address of www.example.com?


Root server returns a referral to .com

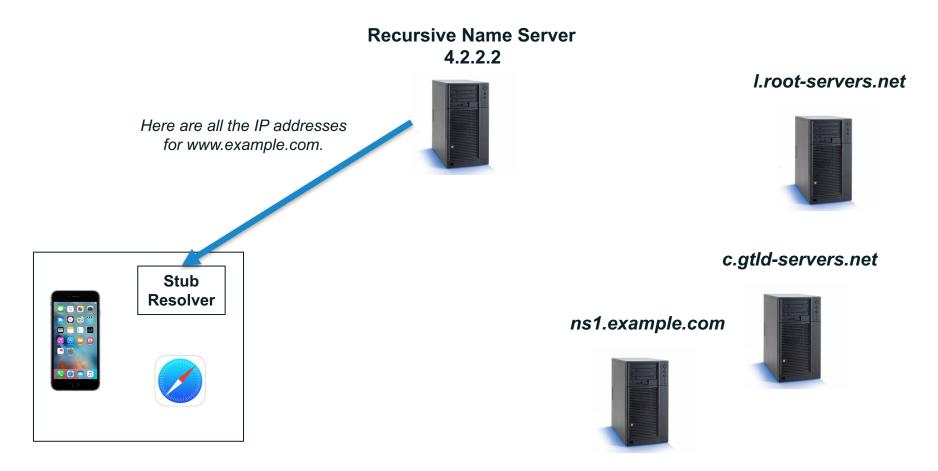


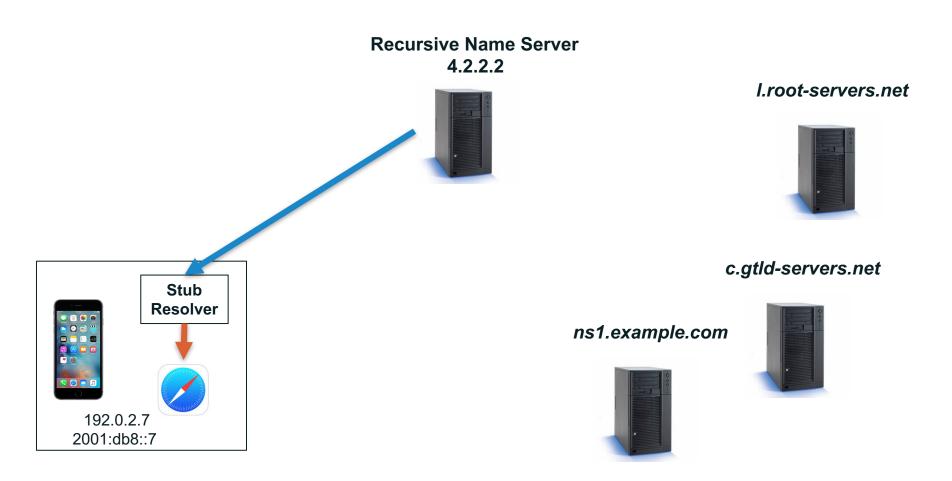

Recursive server queries a .com server

.com server returns a referral to example.com



Recursive server queries an *example.com* server



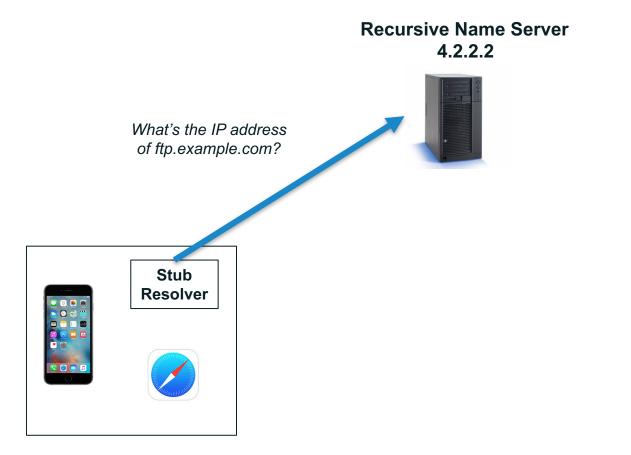

example.com server returns the answer to the query

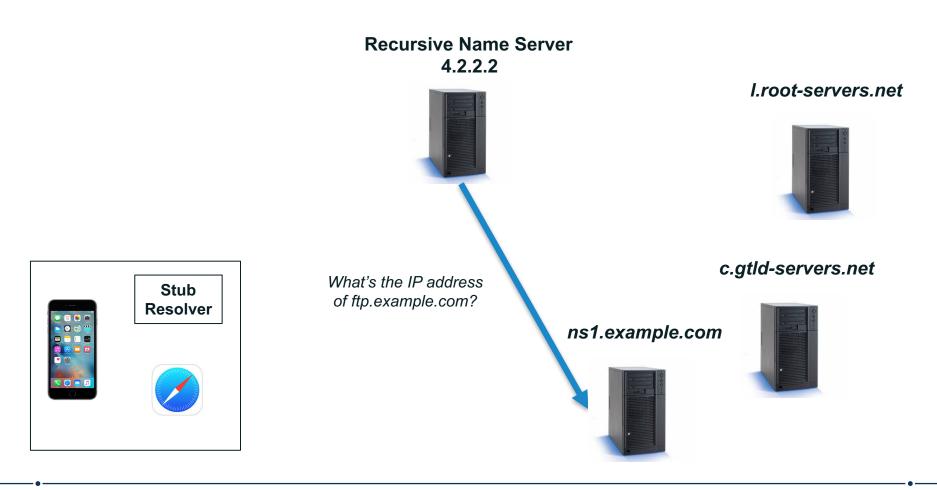
Recursive server returns the answer to the query to the stub resolver

Stub resolver returns the IP addresses to Safari

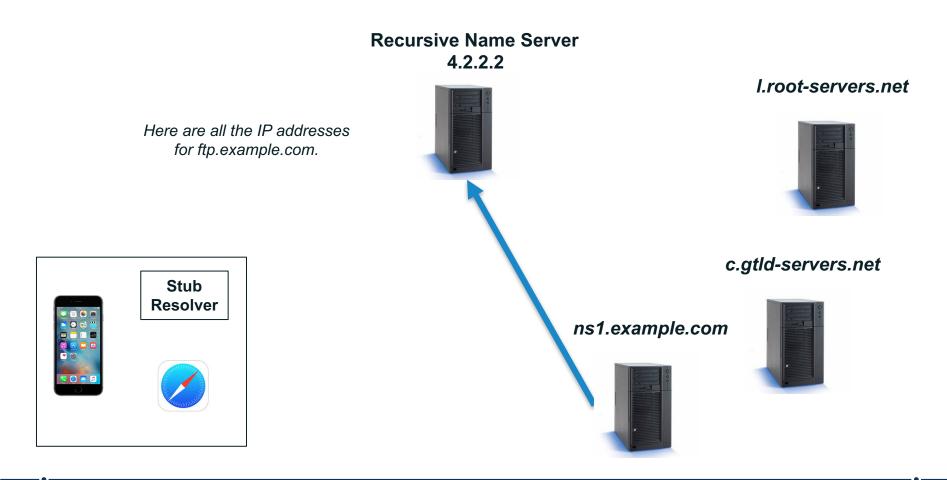
- Caching speeds up the resolution process
- After the previous query, the recursive server at 4.2.2.2 now knows:
 - Names and IP addresses of the .com servers
 - Names and IP addresses of the example.com servers
 - IP addresses for www.example.com
- Let's look at another query following immediately the first

A user types *ftp.example.com* into Safari on her phone Safari calls the stub resolver function to resolve the name

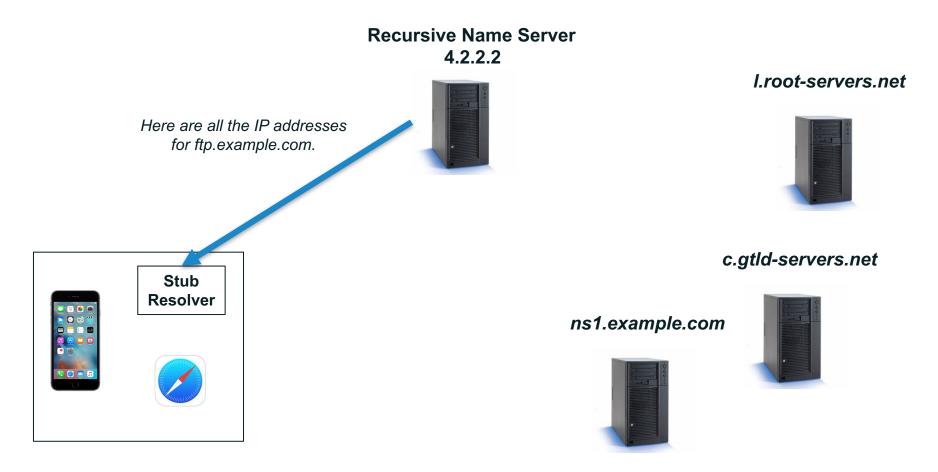

> Recursive Name Server 4.2.2.2

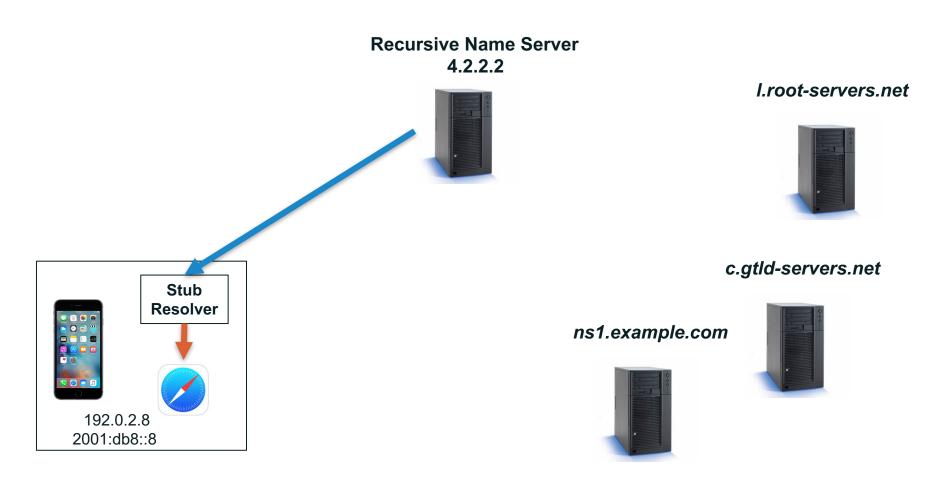


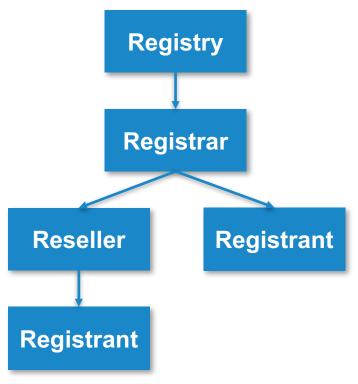
The phone's stub resolver sends a query for *ftp.example.com*/IN/A to 4.2.2.2



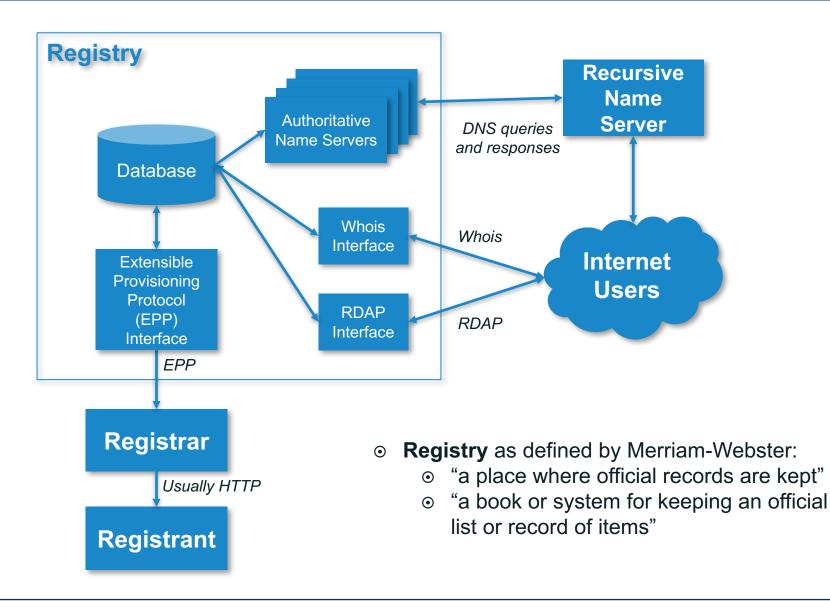
Recursive server queries an *example.com* server




example.com server returns the answer to the query


Recursive server returns the answer to the query to the stub resolver

Stub resolver returns the IP addresses to Safari



- **Registry**: Database of domain names and registrants
- **Registrar**: Primary agent between registrant and registry
- **Registrant**: A holder of a domain name registration

Domain Name Registries

Thank You and Questions

Visit us at **icann.org** Email: matt.Larson@icann.org

facebook.com/icannorg

youtube.com/icannnews

linkedin/company/icann

slideshare/icannpresentations

soundcloud/icann