DNS Privacy Current State and Development

Tim Wicinski tjw.ietf@gmail.com IETF Technical Liaison Group ICANN 61 San Juan, March 2018

Overview

- Problem: Why Internet privacy and DNS Privacy are important (DNS leakage)
- Current state of technical solutions/standards
- Implementation status of current solutions
- Operational deployment
- Future Directions

DNS Privacy

DNS Privacy: Problem

- DNS was designed 30 years ago
 - RFC 1034/1035 1987
- Too much information
 - DNS Requests are sent in the clear
 - The Fully Qualified Domain Name (FQDN) sent to root name servers
- Some requests expose too much
 - DNS Lookup for 'twicinski-laptop.internal.salesforce.com'
 - EDNS Client Subnet

DNS Privacy: History

July 2013 - "Summer of Snowden"
IETF published <u>RFC 7258</u> (July 2013)

"Pervasive Monitoring is an attack on Internet users and organizations"

- April 2016 GDPR Approved
- May 2018 GDPR Compliance

Technical Standards

Technical Standards: DNSSEC

• RFC 2065 published in March 1999

• Authentication (or non-existence) of DNS records

• Two Part Deployment

- Signing of DNS Zones and Records
- Validation of Signed Zones and Records
- Lacking a "Must Have"
 - DNS Authentication of Named Entities (DANE)

DNSSEC Zone Signing

- Deployment still limited to Internet Infrastructure
- ICANN drives this
- Government Requirements
 - US Government Federal Requirements
 - Germany and Netherlands Regulations
- DNSSEC not always an option
 - Amazon AWS does not deploy
 - DNS Vendors limited support
- Enterprise Adoption at Scale lacking
 - Cloudflare

DNSSEC Validation

- Done at DNS Resolver stage
- Research shows 15% of user population
 - Google DNS ("DNS on at 8's") does
 - Quad 9 ("Now DNS on the 9's!") also
- Peak DNSSEC?
- Business Constituency avoids problem
 - "Behind Firewalls, No One Can See Your Dirty Laundry"

DNS Privacy: Other Work

DNSCurve

• Initial interest but no real adoption

• DNSCrypt

- OpenDNS
- DNSSEC-Trigger
 - Unbound used DNS-over-TLS

• <u>.ONION</u>

- Defined as Special-Use Name
- All for an SSL Certificate

Technical Standards: DNS Privacy

• <u>RFC 7816</u> - DNS Query Name Minimisation (March 2016)

- Stop sending FQDN to root name servers
- Great in the GDPR situation
- <u>RFC 7858</u> DNS over TLS (May 2016)
 - Uses a different Internet Port (853 instead of 53)
 - TCP Based
 - Lacks the TLS Authentication piece
- <u>DPRIVE</u> Working Group of IETF (September 2014)
 - Focused on this problem

DPRIVE

- Focus on Stepwise Solutions
 - No Ocean Boiling
- DNS Stub Resolver to Recursive Resolver
 - Technical Solution
 - Reveals the most information
- Harder Problem: Recursive to Authoritative
 - Non-Technical Solution
- Tracking Implementations and Usage

Implementation Status

Current Implementation Status

- DNS Privacy Deployment
 - DNS-over-TLS Clients
 - Trustworthy DNS-over-TLS Recursive servers
 - Mobile
- DNS-over-TLS Clients/Forwarders
 - Several exist
- DNS-over-TLS Servers
 - Knot/Unbound/Stubby leading the way
- Mobile
 - DNS-over-TLS on Android committed but not released
- See Charts at <u>dnsprivacy.org</u>

Operational Deployment

Operational Deployment: DNS Privacy

- "The sound of an IETF standard that no one uses"
- User Awareness of the issue
- Mobile **will** be the driver for User Community
- Tangible Benefit for Business Constituency
 - Use of Shared Internet Server Infrastructure
- Quad9 only really deployment at scale

Future Directions

Future Directions: DNS Privacy

- GDPR is Happening
- Lots of areas of DNS data leakage
 - EDNS client subnet
 - \circ DNS logs
 - Certificate Transparency

Future Directions: Standards

- Authentication of DNS-over-TLS resolvers
 - Not part of original DNS-over-TLS standard
- DNS-over-HTTPS
 - Middleboxes/China/etc
- DNS-over-QUIC
 - Yet Another Internet Transport
- IETF starting work on resolver to authoritative portion
 - Root servers only part of the solution

Future Directions: Implementations

- Integration into Client Operating Systems
 - Mobile
 - Laptops
- Increased Resolver software deployment
 - Built-in and turned on
 - ...And it can't break anything

Future Directions: Deployment

- ICANN has limited scope in deployment
 - TLDs (and mostly gTLDs)
 - "We Need Bigger Carrots"
- Need to show deployment at scale
 - Tendency to avoid possible traps
 - Look at IPv6 Deployment
- Mobile Clients will drive this