
BARCELONA – How It Works: DNS Fundamentals EN

Note: The following is the output resulting from transcribing an audio file into a word/text document. Although
the transcription is largely accurate, in some cases may be incomplete or inaccurate due to inaudible passages
and grammatical corrections. It is posted as an aid to the original audio file, but should not be treated as an
authoritative record.

BARCELONA – How It Works: DNS Fundamentals
Saturday, October 20, 2018 – 08:45 to 10:15 CEST
ICANN63 | Barcelona, Spain

UNIDENTIFIED FEMALE: Good morning, everyone. We’ll get started in a few. We’ll give it a few

more minutes. I think it’s a bit early for some people. Thanks.

 Good morning, again, everyone. Welcome to the first day of our How It

Works tutorials. We have two days of How It Works, four sessions each

day. We are starting today with DNS Fundamentals and our presenter is

Matt Larson, Vice President of Research from the Office of the CTO at

ICANN. Welcome, again.

MATT LARSON: Good morning, everyone. Welcome. So, considering the number of us

that we have in here, we have plenty of time for the material, so please

feel free to wave your hand and ask a question. We have a roaming mic

and there’s a mic there, so we’re good. Let me know if you have a

question. You can actually probably just shout it out and I’ll repeat it for

the recording. Well, let’s begin.

 I’m going to assume everybody knows what an IP address is. These are

easy for machines, but hard for people. There’s examples. I’m sure

everyone has seen an IPv4 address. You may not have seen an IPv6

address. They’re not quite as common, but they’re even harder to

remember than IPv4 addresses. So, if you’re going to try to access a

BARCELONA – How It Works: DNS Fundamentals EN

Page 2 of 50

resource on the Internet, it simply doesn’t work to try to remember the

IP addresses. People deal in names.

 So, this is an issue called name resolution that has to be taken care of

for people to be able to use names on the Internet and machines to be

able to turn those names into addresses, so that they can get the

packets to the right destination.

 So, in the early days of the Internet, this name resolution process was

simpler and names themselves were simpler than what we have now.

They were what we would now call a single label name. That is, there

were no dots. There were no domain names yet and the reason is that

domain names hadn’t been invented in the early days of the Internet.

These single label names could be up to 24 characters, and they were

called host names.

So, as I said, the process of mapping names to IP addresses is called

name resolution. This is something that any application on the Internet

is going to have to do because users are going to type in or otherwise

communicate in names, and the application needs IP address to send

its packets to the right place.

 So, this process of name resolution has changed over the years. In the

early days of the Internet, it was done very simply using a process and

a file called a host file. For historical reasons, I have it up here it that it

was named HOSTS.TXT. This is the same function of the modern

/etc/hosts file on Linux or Unix, if you’re familiar with that. But, it was a

slightly different format, but the idea was the same.

BARCELONA – How It Works: DNS Fundamentals EN

Page 3 of 50

 You had a file that had the name and IP address of literally every

machine on the Internet. The Internet, of course, was much, much

smaller. We’re talking about the late ‘70s/early ‘80s timeframe here, or

early ‘80s timeframe. So, it was possible to have every machine on the

Internet’s name and address located in one file. It was a big file, but it

was possible.

 Name resolution itself was really easy. When you wanted to look up a

name, you just searched through the file until you found the name.

Then, you looked over in the next column, and there was the IP address.

So, it was very easy for applications to do.

 Now, this file had to be centrally maintained, and there was an

organization that had a U.S.-government contract to do some network

maintenance/network operations tasks in the early Internet. One of the

things they did was maintain this file.

 Network administrators all over the Internet, when they had changes,

when they would add a machine, or delete a machine’s name or its IP

address, would send an e-mail to the NIC (Network Information Center)

and say, “Oh, hey, can you update the master host table with this

change I’m giving you?”

 This process worked reasonably well for a while. Ideally, everyone had

the latest version of this HOSTS.TXT file. It was released once per week,

and it was downloadable via the FTP protocol. So, whenever you

thought your file might be out of date, you would FTP a new one. Some

people just had it automatically schedule to download a new file every

BARCELONA – How It Works: DNS Fundamentals EN

Page 4 of 50

week. You’d maybe download the file once for your local area and then

distribute it among your local machines.

 Did I do that? Sorry.

 Okay. I will try not to touch my laptop. [I’ve never] used the clicker to

advance.

 All right. So, as you might guess, there were some obvious problems

that happened with HOSTS.TXT grew, and, therefore, the file grew. One

was naming contention. Remember, this was before domain names.

So, all of the names in this file were up to 24 characters long. Everybody

in the entire Internet had to share that name space, if you will, of 24

characters. That meant that you had to use more and more obscure,

complicated names to be unique from all the other names.

 On top of that, the file maintenance process was extremely low-tech.

Nowadays, what we do is we have a database and you extract a text file

from the database periodically. But, back then, there was no database

behind this. It was literally an ASCII text file that someone at the NIC

pulled up in a text editor and made changes to.

 So, that meant that there was no good method to prevent duplicates,

and sometimes duplicates did creep into the file because it was just a

human editing a file.

 Of course, synchronization was a problem. Nobody ever had the same

version of the file, ever. There were always different versions floating

around because it was impossible to stay up to date.

BARCELONA – How It Works: DNS Fundamentals EN

Page 5 of 50

 Finally, the traffic and load involved on the early Internet just to move

this file around began to significant. It began to be a significant portion

of the overall traffic on the Internet, just moving HOSTS.TXT. I am told

– this is a little bit before my time – that, in the last days of HOSTS.TXT,

the file was so big and the download was so slow that it took over a

week to download it. So, by the time you actually finished the

download, there was already a new one ready. So, it was physically

impossible to stay up to date.

 So, clearly, the idea of a centrally maintained file with every name and

IP address of every machine on the Internet just did not scale.

 So, in the early ‘80s, discussion started on a replacement. There were a

couple of goals. One was addressing the scaling issues that I’ve just

talked about. Another one that’s important that gets overshadowed by

the first goal is to simplify e-mail routing. Back in the days we’re talking

about, your e-mail address was still username@, but rather than

domain name, it was usually named @hostname. So, your e-mail

address was tied not to a domain name – because domain names don’t

exist yet – but tied to a physical machine.

 This was an issue, because what if that machine got overloaded and the

administrators needed to sort of rebalance and puts accounts on other

machines or otherwise maybe retire that machine. They no longer

wanted it to be the mail server. They wanted another machine to be the

mail server. But, everyone’s e-mail address was tied up with the

physical name of the machine. So, a goal was to simplify e-mail routing

BARCELONA – How It Works: DNS Fundamentals EN

Page 6 of 50

to make it possible to separate your e-mail address from the physical

machine.

 So, as we all know, the results of this discussion on a replacement was

the domain name system. So, this is my one slide summary of DNS; DNS

in a nutshell. Fundamentally, DNS is a distributed database. It’s

distributed all over the world, but everyone owns their own portion of

the data. So, that’s what I mean by: data is maintained locally. The

people who own the data get to maintain it. But, this is available

globally. Anybody all over the world, all over the Internet, can look up

that data.

 DNS follows the client-server model. Clients are called resolvers. The

main thing to remember about resolvers is that resolvers send DNS

queries. The server side is called name servers. The main thing to

remember about those is that name servers answer queries.

 Now, there’s some important optimizations. DNS uses caching all over

the place to improve performance. If we’re talking about a distributed

database that’s over the entire world, the speed of light is only so fast.

So, you can imagine doing a lookup, if you had to do multiple lookups

all over the world – send queries, get responses – we’re talking

hundreds of milliseconds. Those eventually add up to seconds. They

add up to a lot of time. Often, there’s a real user waiting for a lookup to

complete. So, DNS uses caching to improve performance. DNS clients

can remember information they’ve looked up previously to speed up

further lookups.

BARCELONA – How It Works: DNS Fundamentals EN

Page 7 of 50

 DNS also uses replication to provide redundancy and load distribution.

What I mean by that is this data that a given organization will maintain

locally – they don’t have just one copy of the data. They replicate it and

have multiple copies of the data. That provides redundancy in case one

copy is unavailable. Also, if your organization is getting a lot of DNS

queries, you have multiple places where that data is available to answer

those queries.

 So, what I think is helpful at this point is to give a high-level overview of

all the components of the DNS ecosystem because we’re going to be

talking about these as we go on. I think it helps to get this 10, 000-ft.

view early on to sort of set it in your mind.

 So, let’s start at the lower left. We have a device there that needs to use

the Internet. Of course, it used to be that such devices filled rooms.

Then they sat on desktops. Now we literally carry them around in our

pockets or wear on our wrists.

 So, any device that’s going to use the Internet almost certainly is going

to use domain names. Therefore, it’s going to need a DNS client to turn

those domain names into IP addresses. This client is what we call a stub

resolver. Remember, resolvers are DNS clients. There are actually two

kinds of resolvers. The first is this very, very simple one called a stub

resolver.

 A stub resolver is often, almost always, provided by the operating

system. It’s a system the operating system has to provide for

applications. So, for an application there, for example – we have the

Safari web browser icon. So, we can imagine a user typing a name into

BARCELONA – How It Works: DNS Fundamentals EN

Page 8 of 50

Safari. So, Safari, via an API call, via a function call in the Safari program,

calls the stub resolver and basically says, “Here’s a name. I need the IP

address.”

 So, the stub resolver’s job is very simple. It’s to accept that request from

an application and then generate a DNS query and send that query to

something called a recursive resolver, which is what we have in the

center there. It’s appropriate that that’s in the top-center of this

diagram because recursive resolvers are the work horse of DNS.

So, the stub resolver is the simple DNS client. The recursive resolver is

the complicated DNS client.

So, it actually consists of two parts there, you can see. It has a name

server component in that it’s answering queries itself from the stub

resolver. But, it also has a resolver component – a complicated resolver

component – that knows how to navigate the entire DNS and track

down the information that the stub resolver is looking for.

It does this by sending queries to what we call authoritative name

servers. It might send a query to an authoritative server that might say,

“Well, I can’t answer your question, but I can get you closer to the

authoritative server that can. Let me refer you to another authoritative

server.” The recursive resolver is smart enough to follow that referral,

contact another authoritative server. Eventually, it contacts the right

authoritative to answer the stub resolver’s questions exactly. It gets

that response, and then it relays it to the stub resolver.

BARCELONA – How It Works: DNS Fundamentals EN

Page 9 of 50

So, as you can see, the stub resolver’s job is pretty easy. It just throws a

query over the wall to the recursive resolver, and it waits. The recursive

resolver either has to provide the answer to the query or an error of

same kind, saying, “The name doesn’t exit. I couldn’t do your query,” or

something along those lines.

Another important point about the recursive resolver – I know I’ve

shown there that there’s a cache, that it remembers all of the lookups

that it has done so that it can speed up future lookups.

Caching actually happens at multiple places. I don’t show it, but now

modern stub resolvers also typically have a cache. And even

applications have a cache. They remember what names they’ve looked

up with the stub resolver.

So, you have DNS information getting caches multiple places, which

makes changing information sometimes take a while because you have

to make sure that it’s going to time out of all those caches – the old

information – before the new information is available.

But, that’s a high-level view of DNS that hopefully will help as we go on

here.

So, I’ve said that DNS is a distributed database. Well, what’s the

structure of that distributed database? Well, the structure is what we

call an inverted tree. This is a computer science thing. I have an example

of an inverted tree there. It’s inverted because, in a normal tree, of

course, you have the root at the bottom and the branches grow

BARCELONA – How It Works: DNS Fundamentals EN

Page 10 of 50

upwards. But, a computer scientist tree is upside-down. A computer

scientist has the root at the top, and then the branches go downward.

So, this inverted tree structure is something we call the name space.

This is the structure of the DNS database. It’s a massive, massive

inverted tree.

So, if you compare this, you may be familiar with other kinds of

database. Think of a relational database. The structure of that database

is you have tables, and each table has rows, and, in a given row, there

are multiple columns. So, that’s one way to do it. That’s one way to

store information in a database.

But, the important point here – the reason I’m making this distinction –

is that the DNS name space is not like a relational database.

Fundamentally, there’s this inverted tree down underneath everything,

which has important implications for writing software and for

understanding how DNS works.

So, in this inverted tree, we have nodes. Each one of those boxes is what

we call a node in the tree. Every node has a label and has a name, except

the root node. The root node has a null label. That is, its label is that it

doesn’t have a label. That’s sort of mind-bending for this early in the

morning on a Saturday – the idea that the label is no label. I’ll let you

think about that for a moment. That was a kind of a joke, but it’s also a

little early on a Saturday morning for a joke, and it wasn’t a very good

joke.

BARCELONA – How It Works: DNS Fundamentals EN

Page 11 of 50

So, the root node has a null label. Sometimes you see it written as here

with a dot, just to indicate that there’s something. We’re trying to show:

how do you show that nothing is there?

So, if you look on the right of this slide, you’ll see that we often talk

about the relationship of these nodes to the root, where they are

located physically in this tree. The root, of course, is at the top.

Immediately below the root, those nodes are what we call top-level

nodes. Below that is second-level, and so on down.

Sometimes you use parent-child terminology to describe nodes. For

example, well, the node named Example is a child of the node named

Com. Com is the parent of the node named Example. So, you use

parent-child terminology to refer to nodes that are above and below

one another in the name space tree.

So, legal characters for these labels are what we abbreviate as LDH:

Letters, Digits, and the Hyphen. That’s all U.S. ASCII. That’s all you can

use for label names. They have a maximum length of 63 characters.

Case does not matter. Uppercase and lowercase are compared

similarly.

Now, I know everyone is maybe familiar with the concept of

internationalized domain names, where there are many different

characters and domain names other than U.S. ASCII.

So, you might be asking, “Well, how is it that that’s possible, yet you’re

telling me that the legal characters for a label are letters, digits, and a

hyphen?” That’s something called internationalized domain names. We

BARCELONA – How It Works: DNS Fundamentals EN

Page 12 of 50

don’t have time to go into it in any depth, but the short answer there is

that internationalized characters are encoded into ASCII characters.

From DNS’s perspective, it all just looks like letters, digits, and hyphens.

It’s an application, like a web browser, that sees the encoded name and

turns that into the appropriate internationalized characters.

An example of one of those names is in the upper-left. All

internationalized domain names, all labels that are internationalized,

start with xn--. That’s completely random. There’s no semantic

significance to xn. It was just chosen at random. Then, the characters

following are the internationalized names.

Actually, I confess that, even though I made this slide, I don’t remember

which internationalized name that is, which is one of the downsides of

IDNs from an administrative like this, that it’s just a string of characters

without an application to turn that string back into internationalized

characters. You don’t even know what they are.

All right. So, every one of these nodes in the name space has a domain

name. That’s how we name the node and how we describe it and

describe where it is. So, you see there’s a node highlighted there at the

bottom in blue, that www. Well, that node’s domain name, to generate

that – we start with that node and we write down its label. Then we

write a dot, and then we write its parent’s label, and we write a dot, and

then its parent label, and so on, until we get to the very top of the name

space, until we get to the root.

So, you can see that, if we do that, working our way up the domain

name that’s highlighted there, it’s www.example.com. A fully qualified

http://www.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 13 of 50

domain name that is not relative to any other domain name. It’s

absolute. It can refer to one and only one name in the name space. A

fully qualified domain name ends in a dot. That dot at the end is the

separator between the top-level node – in this case, com – and the

root’s null label.

So, you imagine that, if you’re working your way up, you write

www.example.com-dot. And then the root is null label, but you can’t

write the null label. So, you end up with a name with a dot.

That dot at the end indicates that we are talking about one and only

one domain name here. Domain names can be relative. You, for

example, could talk about www.example relative to the com name. So,

www.example relative to com. Www.example is not a fully qualified

domain name.

If it helps – I don’t have a slide for this – an analogy would be a file

system, whether it be the Linux or Unix file system or the Windows file

system. Underneath the file system, that data structure is also an

inverted tree. The root directory – slash of backslash, depending on

Linux or Windows respectively – that is the root directory. So, imagine

a path name that starts with a slash, and then you have all the various

names, directories, down to the file name. That’s like a fully qualified

domain name. An absolute path name starting with a slash is like a fully

qualified domain name.

But, everybody is familiar with relative path names, like you were

talking about only the name of a file. That file could be in any directory.

That’s a relative file name, as opposed to the absolute path name.

http://www.example.com-dot/
http://www.example/
http://www.example/
http://www.example/

BARCELONA – How It Works: DNS Fundamentals EN

Page 14 of 50

Just a couple more terms here, and then we’ll move on to some other

material. So, a domain is a term we need to understand. That is a node

in this name space and everything below it, what we would call its

descendants – its children and its children’s children, and so on.

So, let’s look at the node dot-com here and let’s highlight it. Dot-com

there is what we call the apex, or the top, of the dot-com domain. The

dot-com domain includes dot-com and everything below it. How many

dot-com names are there? At this point, 120+ million. So, I’m showing

three out of 120 million. But, the dot-com domain is huge. It’s dot-com

and everything below it in this name space.

Now, we contrast that to this term, “zone.” This is a pretty important

term here, this concept as well. So, we talked about, just a moment ago,

about the host file didn’t scale. The idea that you had everything

maintained centrally by one organization just did not scale, did not

work.

So, a key design goal of DNS was to allow distributed administration, to

allow everybody to maintain their own data directly themselves. So,

this entire name space is divided up to allow distributed

administration. So, different organizations have different parts of the

name space, and they control them directly.

So, how do we divide up the name space? Well, those administrative

divisions are called zones. Zones are created by a process called

delegation. So, a zone higher up in the name space delegates to a child

zone, and that child zone can delegate to another child zone. So, just as

in real life, where you can’t stop your children from having children

BARCELONA – How It Works: DNS Fundamentals EN

Page 15 of 50

themselves, when you delegate to a child zone, that child zone in DNS

can then also delegate further down the name space and delegate child

zones.

So, here’s an example. Here we have that same portion of the name

space that I’m using for these examples, the same one I’ve been using.

This is just the name space, just the inverted tree.

Let’s draw some zone boundaries. Now, the thing about zone

boundaries is that they reflect administration. They reflect how we’ve

divided up the name space to administer it. We could divide it up

differently depending on what the requirements were.

So, you can’t go from this to this without having the additional

information of knowing there those zone boundaries are. I happen to

know, because I made this example, that these are where I’m placing

the zone boundaries. And they do reflect how things are in real life. In

real life, there is a root zone at the top of the name space that delegates

– got some arrows here that represent delegation. The root zone

delegates to various top-level zones. The top-level zones then keep

delegating on downward, as I’ve shown here.

So, what’s the relationship of name servers that answer DNS queries to

zones? Well, this is where that term “authoritative” that I used on that

overview slide comes in. We say a name server is authoritative for a

zone if it has complete knowledge of the zone. So, you take zones and

you put them on name servers, and then name servers know all about

those zones and can answer queries about data in the zone.

BARCELONA – How It Works: DNS Fundamentals EN

Page 16 of 50

So, the idea is that an authoritative name server can give you a

definitive answer about information in the zone. It can say, “Here is the

answer. I can tell you definitely because I’m authoritative for it,” or it

can say, “What you were looking for doesn’t exist, and I could definitely

tell you it doesn’t exist because I know everything there is to know in

the zone as the authoritative name server for that zone.”

Now, for a given zone, you don’t want just one authoritative server.

Imagine what happens if somebody trips over the power cord and the

server power goes off. Then your zone is off the air, and nobody can ask

you queries. So, you want multiple authoritative servers for any given

zone. This goes back to what I said a few slides ago, that DNS uses

replication to achieve redundancy and spread the load.

So, by having multiple redundant authoritative servers for your zone,

you have redundancy, and then, if you’re getting a lot of queries, you

have multiple authoritative servers to answer those queries, to spread

the load out.

Now, if you’re going to have multiple authoritative servers, you have to

have a way to keep them all synchronized. You need the same

information for your zone on all servers. But, fortunately, DNS makes

this easy. There is a built-in zone replication protocol called the zone

transfer. I won’t read you all the words on this slide, but it describes how

the concept works.

You have a given authoritative server that you designate the primary.

That’s where you make all the changes. Your other authoritative servers

are configured to load from the primary. So, you make a change in the

BARCELONA – How It Works: DNS Fundamentals EN

Page 17 of 50

primary, the primary tells what we call the secondaries that the zone

has changed. The secondaries come in and they say, “Please give me a

new copy of the zone,” via this process called the zone transfer, and

then the secondaries get a copy of the zone. So, that keeps everyone in

sync.

Now, it’s important to remember here that the information on all these

authoritative servers is the same. Once the replication happens, it’s the

same information. So, the primary isn’t any better than the

secondaries. The only difference is that it’s where you make the

changes. It’s where the changes start propagating. But, the information

on all the servers is the same. So, there’s no degrees of authority. You

can’t be more or less authoritative. You’re either authoritative or you’re

not. And primary and secondary are equally authoritative.

So, we’ve talked about zones at a high level, but let’s look into a zone

and talk about the kind of data that we can put into DNS and that a zone

would hold. So, remember, every one of these nodes in our name space

has a domain name. The idea here is that a domain name can have

different kinds of data associated with it. Those data are what we call

resource records. We sometimes abbreviate that as RR. There are

different types of records for different kinds of data that we want to

store in DNS.

I don’t know why we got some things blocking here.

So, a zone consists of multiple resource records. What’s blocked there

is it says that all the resources for a zone are stored in what’s called a

BARCELONA – How It Works: DNS Fundamentals EN

Page 18 of 50

zone file. Every zone has its own file. You never mix resource records

from multiple zones in one file.

So, the point is, a zone is the sum of all its resource records, and they go

in a file called a zone file. Then, that zone file goes to an authoritative

server, which reads the zone file, and then it knows everything in the

zone, so it can answer queries about that zone.

So, I want to go into just a little bit of detail of what makes up an

individual resource record. So, we’re talking now about a single piece

of DNS data because, sometimes, you’ll actually see these written

down, and it helps to understand the syntax, at least, at a high level.

So, a resource level has five fields. It has the domain name that the

resource record is associated with. Every resource record has what’s

called a TTL, or a Time To Live. That’s how long that record can live in a

cache. It doesn’t apply to the authoritative server. The authoritative

server knows about that information forever. But, when it gives it out to

someone and a resolver and the resolver puts it in its cache, it has to

obey this time-to-live value.

So, I want to skip the rest of that and show some examples that make it

a little more straightforward. Here are some common resource records

types. I think I have – yeah. These are, by far, the most common, this list

of seven. There’s a handful of resource records that make up the vast

majority of all the information in DNS at this point. This is that short list.

We’re going to talk about these, each, in some level of detail, sometimes

king of briefly.

BARCELONA – How It Works: DNS Fundamentals EN

Page 19 of 50

As we’ll see, the most common type of resource record are the address

records to store v4 and v6 addresses, because that’s the main purpose,

at this point, of DNS: to turn domain names into IP addresses. So, it

would make sense that most of what’s in DNS would be records that

store addresses of domain names. But, there’s other information in

there as well.

So, in fact, as of about a year ago – the last time I looked – there were

84 different types allocated. There is an IANA registry for these, if you’re

familiar with what IANA is: the protocol parameter registries. Here’s the

actual URL and what the webpage looks like. So, there are 84 different

official types of data that you can put in DNS.

It’s relatively easy to get a new type. As you can see from some of the

numbers there, it’s a 16-bit value. We can 65,000 different types,

ultimately. So, we have a lot of room for expansion. There’s a lot of

additional types. As people think up new and crazy things that they

want to put in DNS, there’s plenty of type space available to create

those records and do that.

But, let’s talk about some of these types of resource records. So, as I

said a moment ago, the most common use of DNS is mapping domain

names to IP addresses. That’s arguably the main reason this whole

thing exists. So, the way we do that is with two different types of

records: The A record, or the address record. That maps a domain name

to an IPv4 address. And then there’s what we call a Quad A record

because there are four A’s. That maps a domain name to an IPv6

address.

BARCELONA – How It Works: DNS Fundamentals EN

Page 20 of 50

Here you have an example of what these records actually look like. If we

were to look in a zone file, the plain text representation of those records

would look exactly like I have on the slide here. So, that first record

simply says that example.com has the IP address 192.02.7, and then the

second record there says that example.com also has the IPv6 address,

starting with 2001 there. So, that’s actual DNS data shown on a slide.

Now, DNS is sort of both clever and confusing at the same time in that

these types, this list of 84 types – there are types that are used by people

outside DNS, like A and Quad A; so, consumers of DNS, if you will. But,

DNS itself, to make DNS work, also uses certain types. They’re for

internal use only. They’re when you open up the computer or whatever

and it says, “For Internal Use Only.” That’s those types. But, these types

are sort of mixed together.

So, I think it’s important to remember that some types are used by

people outside DNS, and some types are used by DNS itself to make

DNS work. The analogy I use – think of a warehouse. If you’ve got stuff

you care about and you want to put it in a warehouse, you don’t just

rent the warehouse, back your truck up, and just throw the stuff in. That

doesn’t work. You need shelves and scaffolding. You need the

infrastructure in the warehouse first, and then you take the goods out

of the truck and you put them on the shelves.

So, some of the types for DNS – examples would be NS and SOA, which

we’re going to talk about – are like the shelves. They’re used only by

DNS itself. Nothing outside DNS cares about those types. But, the stuff

that things outside DNS care about would be examples like A and Quad

BARCELONA – How It Works: DNS Fundamentals EN

Page 21 of 50

A, where we’re actually saying, “This name has this IP address.” That’s

something that people care about and that they look up in DNS.

So, let’s look at one of these shelving types, if you will, these internal

types. There’s this NS record, the Name Server record. This is how you

say that the authoritative name servers for a zone are. So, as an

example here, these two records show that example.com, the zone, has

two authoritative name servers named, ns1.example.com and

ns2.example.com. So, note that the right-hand side is the name of the

authoritative name server and not the IP address. It’s always the name

of the authoritative name server.

Now, right away, NS records get a little complicated because they

actually appear in two places, as I’ll show. NS records appear both in

the zone itself and in that zone’s parent.

So, here, for example, are the actual NS records for dot-com. So, dot-

com has 13 authoritative server names. They’re named, as you can see,

A (through M).gtld-servers.net. So, those NS records appear in the

dot.com zone, but they also appear in the root zone. The root zone is

the parent of dot-com, and the root zone delegates to dot-com to make

dot-com exist. The actual delegation in the root zone, the thing in the

root zone, the information that makes dot-com exist, is this set of NS

records.

Now, I think if we had this to do all over again, we would have used two

different types. We would have used one type in the zone, and there

would have been another special type for delegating. That’s not how it

was designed. It was designed to have the same type used in both

BARCELONA – How It Works: DNS Fundamentals EN

Page 22 of 50

places. So, you have the NS records for dot-com in dot-com, and you

have the NS records for dot-com in the root. It’s when they appear in

the root that [it] actually delegates dot-com into existence. So, there’s

just explaining that on the bottom-half of the slide. You can think of

these NS records as sort of hanging off the dot-com node in the name

space. They’re associated with dot-com, but then again, they also

appear in the parent zone.

Here’s an example moving down one level in the name space tree. Let’s

look at example.com. Here I have some example NS records for

example.com. Again, I want to point out that they appear both in the

example.com zone, and they appear in the dot-com zone. It’s the

presence of these NS records in dot-com that actually delegate

example.com, that bring it into existence.

So, dot-com, then, actually is 120 million sets of NS records like this,

because that’s what causes a domain name to existence: the delegation

NS records in the zone’s parent.

Now, you can see that I’ve also got a couple of address records shown

there. So, sometimes you need to have the address records for name

servers as part of the delegation. We call that glue. I’m not going to go

into the details here, but delegation actually consists of the NS records

and sometimes some address records for the names in those NS

records.

Another one of these internal-use record types is what we call the Start

of Authority. There’s one and only one SOA record per zone. It goes at

BARCELONA – How It Works: DNS Fundamentals EN

Page 23 of 50

the top of the zone. It has some values in it that mostly control zone

transfers, that replication process, from the primary to the secondaries.

So, this is an example of an SOA record would look like. I’m not going to

go through all the values in detail. An important thing to note, though,

is that every zone has a serial number. That’s simply used as part of that

zone transfer synchronization. Every time a zone changes, its serial

number has to go up. That’s so the primaries can tell, “Do I have the

current version of the zone? My serial number is the same as the

primary’s?” Or, if the primary’s serial number is greater, then the

secondary knows, “Oh, I’m out of date. I need to do a zone transfer and

get the current version of the zone.”

So, remember, I said on one of the first slides in the class that one of the

other design goals of DNS, in addition to name resolution, to mapping

names to IP addresses, was to simplify mail routing. This is the issue. I’ll

recap it here. In a modern e-mail address, like the one there –

user@example.com – how do we know where the mail goes?

Well, in the old days, as I said, you would have looked up the address

for the right side of the e-mail address. It wouldn’t have been a domain

name. Domain names didn’t exist. It would have been a host name. You

would have looked up that host name. There would have been an IP

address. Then, you would have looked up the IP address for that host

name. You would have connected to it via the SMTP mail protocol, and

you would have delivered your message.

DNS lets us decouple the e-mail address from the physical machine

name. We do that with this MX record, or this mail exchange record. It

mailto:user@example.com

BARCELONA – How It Works: DNS Fundamentals EN

Page 24 of 50

looks like this. It lets you say, for a given domain name – say,

example.com – where do I want the mail to go? What machines are the

mail server for this domain?

There’s also that other field, the number you see there – the 10 and the

20. You can have multiple MX records to specify multiple equivalent

mail servers or backup mail servers. So, counterintuitively, lower is

more preferable.

So, in this set of MX records, what it says is that, if you have a piece of

mail for example.com, you should send it to mail.example.com first.

But, if you can’t, for whatever reason – let’s say mail.example.com is not

available; you try to reach it and it doesn’t respond – well, then you

send it to mail-backup.example.com, because that has a higher

preference – well, a higher preference number, but it’s actually less

preferable.

If you had multiple mail servers that were all equivalent to say, “Spread

the load of incoming mail,” you could have multiple MX records, all with

the same preference.

So, what happens is that, when mail server has a piece of mail that it

needs to deliver, it looks up MX records because it doesn’t know how to

deliver the mail. If a mail server has a piece of mail addresses to

matt@example.com, the first thing that it does is it looks up MX records

for example.com to know: where should it send the mail? Then, when it

sees this set of MX records, it knows, “Oh, okay. I should open a

connection to mail.example.com and deliver this piece of mail

addressed to example.com to that mail server.”

mailto:matt@example.com

BARCELONA – How It Works: DNS Fundamentals EN

Page 25 of 50

Now I want to talk about something called reverse mapping. So, we

usually think of, in a DNS context – I’ve said this multiple times – domain

name to IP address. That’s what most people care about. I have a

domain name of a website, of a mail server, of a whatever. I have the

domain name. I want to go there. So, I need to turn that into an IP

address. That’s DNS.

Sometimes you want to do the reverse. You have an IP address and you

want to know what’s the domain name associated with it. So, that’s

what we call reverse mapping. Name to IP is forward mapping. IP to

name is reverse mapping.

Now, in the good old days with HOSTS.TXT, this was easy because you

had the file with names and IP addresses in it. So, you want to look up

a name? You just go through the file until you find the name. There’s the

IP address.

Let’s say you have an IP address. You want to find the name. Well, you

look through the file at the IP addresses until you find the IP address.

And there’s the name. Simple. It’s the same process for forward

mapping and reverse mapping with the host file.

DNS doesn’t work that way. The DNS name space that we have – let me

just back up a few slides to it; here we go – is optimized for searching on

name. If I tell you to look up www.example.com, you can pretty clearly

see that, if you start at the root, you can work your way down and find

it. Indeed, that’s exactly how name resolution works. I just haven’t

gotten there yet.

http://www.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 26 of 50

So, the DNS name space optimized for looking up names.

Now, if I say, “I have the IP address, 182.0.2.1. What’s its domain name?”

well, if you look at this, where do you start? You can’t look up IP

addresses in this data structure. It’s not optimized for doing that.

So, what people said, though, is, when DNS was being designed, “We

still want reverse mapping. It’s useful for a few things.” It tends to be

useful really only in a network administration context. I think nowadays

the canonical example is a utility called Traceroute that lets you show

the hops that your packet is taking as it travels across the network.

Well, Traceroute will show you the IP addresses, but using reverse

mapping, it will turn those IP addresses into the names, and it can show

you the name of the routers that it’s traversing. So, that’s an example

where reverse mapping helps you understand the network better.

Reverse mapping is also sometimes used if you’re looking at logs on a

server – let’s say the logs on your web server – and you see connections

from different places. Rather than the IP addresses, it’s nice to see the

names of the machines that connected to your web server.

So, reverse mapping is important. It’s not nearly as important, in my

opinion, as forward mapping. If forward mapping stopped, the Internet

would screech to a halt. Society would collapse. Dogs and cats would

live together. If reverse mapping stopped, it would just make a lot of

network administrators upset, but the world would go on and keep

spinning.

BARCELONA – How It Works: DNS Fundamentals EN

Page 27 of 50

All right. So, how does reverse mapping happen? Well, the answer –

remember, I said the name space is optimized for searching on names.

So, if we’re going to have a way that we can look up an IP address, we

need to take the IP address and turn it into a domain name. So, if we

turn the IP address into a domain name, now we have a domain name

that we can look up, and we solve our problem.

So, in fact, that’s exactly what happens. So, the IPv4 addresses are all

mapped onto a domain name called in-addr.arpa. In-addr stands for

Internet address, and arpa is a long story. But, in-addr.arpa is where the

IPv4 address space goes. So, every single possible IPv4 address has a

corresponding domain name in in-addr.arpa. At that in-addr.arpa

domain name for that IP address, you put a PTR record – for pointer –

and that points back, if you will, to the domain name.

So, here’s an example in in-addr.arpa, 7.2.0.182.in-addr.arpa. That

actually corresponds to the IP address, 192.0.2.7. You have to flip the

octets of the IP address around. What that PTR records says is that the

IP address, 192.0.2.7, has the name example.com. As you can see, it

corresponds to that A record. You need both. If you want reverse

mapping to work, you have to have PTR records.

I have an example of this. So, this is more of the name space. This might

be buying a house. You have a door and you don’t know what’s behind

that door. You finally open the door and there’s something horrible

back there. That’s sort of like reverse mapping. We have this name

space, and, “Oh, look. Over here in the corner is in-addr.arpa with all

this stuff in it to make reverse mapping work.”

BARCELONA – How It Works: DNS Fundamentals EN

Page 28 of 50

So, with reverse mapping, the only reasons it works is that it’s a

convention that everyone follows. If you have IP address space

assigned to you and you want those IP addresses to reverse-map, from

the regional Internet registries you can get a delegation to the

corresponding in-addr.arpa zone.

So, you would manage, for example, the zone 2.0.182.in-addr.arpa, and

you would populate with the PTR records that corresponded to the

names of the devices on your network. Then, any consumers of DNS,

anyone who wants to do reverse mapping, if they have an IP address

and they want to know, “Well, I wonder what the name is,” they have to

take the numbers in the IP address. They have to flip them around. They

append in-addr.arpa. They look up PTR records like this, and then they

get the name. So, everybody understands the convention, and it works.

This is for IPv4. IPv6 is even uglier. Those go under, as I had on the

previous slide here, ip6.arpa. There is one level in ip6.arpa for each

hexadecimal digit in an IPv6 address. There are 32 hexadecimal digits

in an IPv6 address. So, there are therefore 32 levels underneath ip6.arpa

instead of just four, as there are for IPv4.

So, it used to be that humans could maintain this. It was awkward and

a pain in the neck, but you could do it. Nowadays, you have software

called IP address management software that does all this for you.

That’s the way most people do this. They have a database of all the

machines on their network. Then, out of that database, that generates

zone files. It generates forward zone files. It would generate

BARCELONA – How It Works: DNS Fundamentals EN

Page 29 of 50

example.com. It would also generate the corresponding reverse map

files, like 2.0.192.in-addr.arpa.

So, that’s probably more than you ever needed to know about reserve

mapping. But, it is a thing, and you do hear about PRT records, so I did

want to mention it.

Now, there are many more types of records, as I said. This is just a

sampling of them, not to talk about them, but to just you the idea that

there’s all kinds of crazy stuff that people can put into DNS.

Some of these I have literally never seen, looking in the upper right. I

have never seen an ISDN record, ever. I know that it exists. I don’t know

that anyone is ever using them. So, some of these get defined. They get

maybe used a little, and then they get effectively abandoned. Some of

them are up and coming. But, there you have it.

The point here that I want to make with this slide is that DNS is

extensible. We think of DNS, as I know I said multiple times here, as

mapping name to IP addresses. Of course, that’s the main thing it’s

used for. It’s critically important. But, it’s extensible. Anything you can

think up, any kind of piece of data that you want to associate with a

domain name, you can generate a resource record type for it. You can

get one, move it through the standards process and get it created, and

then you can put your crazy piece of data into DNS associated with

domain names.

An example of that, not that mine is the crazy part – a recent example

of that – is the TLSA record. That lets you associate a digital certificate,

BARCELONA – How It Works: DNS Fundamentals EN

Page 30 of 50

an X.509 certificate, with a domain name. So, that’s another way to say,

“This website has this digital certificate.”

Now, you have to trust what’s in DNS, and that’s a separate issue called

the Domain Name System Security Extensions, or DNSSEC. But, the

point is, if you can trust what comes out of DNS, then it’s pretty

reasonable to say, “Well, I have a domain name, and here’s the

associated digital certificate with it.” Now you don’t need a certificate

authority to tell you to trust that certificate. You can the trust that you

get from DNSSEC to trust when you find a piece of information in DNS

that says, “This name has this digital certificate.” So, that’s an example

of a relatively new thing, a relatively new use of DNS, that’s enabled by

DNSSEC.

I don’t have any time to talk about DNSSEC today, but the idea is that,

once we layer that on top of DNS, you can trust the information that

comes out of DNS. So, if you start to think, “Well, now, if I really have

this trusted store, where I know that what I put in there is going to come

out the same on the either end and a bad guy can’t get in the middle

and change it, if I really trust what’s in DNS, what kind of things can I do

with it?” We’re just starting to see people think of that.

So, if you take the various records that I’ve shown you and you put them

all together, you would have something like this. This is a sample zone

file. This is literally the text file that would on-disk somewhere that

would represent the example.com file, the example.com zone. So, this

zone file. Every zone file is going to have an SOA record and some NS

BARCELONA – How It Works: DNS Fundamentals EN

Page 31 of 50

records because that’s just required. Every zone has an SOA record and

NS records, and then everything else in the zone.

Most zones are this small because, if you think about it, for most domain

names – not all – what do you need? Well, you probably have a website,

and you probably want e-mail to work.

So, this is an example zone that has enough information to show what

the IP addresses are for the example.com website. You can see the A

and the Quad A record. And it has MX records to say, “Where should the

mail go for this zone?” So, this is very typical, a zone this small.

All right. So, the last thing I want to talk to you about today sort of ties

everything together, and that is to talk about the resolution process,

which is, knowing everything that we know, when a stub resolver sends

that DNS query to a recursive resolver and says, “Here’s a domain

name. I want the IP address,” what happens? How does the recursive

resolver find the information?

Well, a DNS query always comprises three paraments: the domain

name, the class, and the type. I didn’t talk about class because class is

one of those ideas that we had early on in DNS for a way to extend it

that never got used. So, as a result, the class is always what we call the

Internet class.

So, the thing to care about here is the domain name and the type. So,

for a DNS query, you could say, “I have the domain name

www.example.com. I want the address record.” So, that’s a DNS query.

You always have to specify the name and a type for a DNS query.

http://www.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 32 of 50

There are two main kinds of queries. Stub resolvers send what are

called recursive queries. This is how a stub resolver says, “Help. I’m

dumb. I don’t know how to do anything complicated, so I need you to

tell me the exact answer to my query. I need you to do all the work and

tell me the answer.”

Now, recursive resolvers are considerably smarter and more

complicated, and they send what are called non-recursive or iterative

queries. What this query says is, “I am a smart recursive resolver. You

can either send me the answer, if you have it, or you can send me a

partial answer and I will figure it out from there.”

So, let’s see how this works. So, resolution starts at the root zone. What

that means is that it starts at the top of the name space and it works its

way down. I think, having started at the name space on a few slides

now for the past hour, you can see how that works. If you start at the

root, you just work your way down and you can find anything in the

name space. That’s how DNS name resolution works.

But, what does it mean to say, “Start at the root”? Well, there is a root

zone, and it starts by sending a query to the authoritative servers for the

root zone. Those are very special servers, and they’re called root name

servers. So, root name servers is a short way of saying the name servers

that are authoritative for the root zone.

Now, if we’re going to start at the root, we need the names and IP

addresses of the root name servers then, just to start off. We have to

know how to reach them. How do we do that?

BARCELONA – How It Works: DNS Fundamentals EN

Page 33 of 50

Well, the answer is that you have to configure them. Every recursive

resolver has to have them configured. There’s no way to sort of come

up and discover them. When your laptop came up on the ICANN Wi-Fi

network here, it said to the network, “Help. I don’t have an IP address. I

don’t know anything,” and the network said, “That’s okay. Here you go.

Here’s your IP address. Here’s some other configuration information.

Enjoy Barcelona.” That’s the DHCP, the Dynamic Host Configuration

Protocol. So, your laptop could come up with no information, and the

network says, “Don’t worry. Here you go.”

A recursive resolver cannot do the same thing. It can’t come up on the

network and say, “Help. How do I find the root name servers?” It has to

be configured with the list of root name servers.

Nowadays, of course, where everything is packaged up for you by you

operating system distributor or your software developer, the root name

servers come configured in recursive resolvers already. But, the point

is, somebody had to put them there in the first place. The recursive

resolver can’t magically discover them.

So, this list of root server names and IP addresses is what we call the

root hints file. This is simply how you tell a recursive resolver, “Here you

go. Here’s how to reach the root name servers.” That URL that you can’t

quite see is the domain name for the canonical location of the root hints

file. It is at the internic.net domain name, which is sort of a blast from

the past for those of those who have been doing this for 30 years.

But, here is the list of root name servers. This is what the root hints file

looks like. So, it starts with 13 NS records. You see that there’s a dot on

BARCELONA – How It Works: DNS Fundamentals EN

Page 34 of 50

the left. A free-standing dot is how we represent that top node, the root

node, in the name space.

So, what this says is that the root itself has these 13 NS records. You can

see that they’re named A.root-servers.net through M.root-servers.net.

So, those are the names of the 13 root name servers.

Each of those root servers has an IPv4 address. You can see that that’s

the next list. Then, it has an IPv6 address. So, if you give this file to a

recursive name server, it knows how to start and get going and contact

a root server when it needs to.

So, let’s take a slight detour. It’s a detour, but it’s going in the right

direction here. Let’s talk about the root zones since it’s so important,

since it’s where name resolution starts. How does the root zone work?

Well, we don’t even begin to have enough time to talk about all the

complexities of administering the root zone. But, it’s somewhat

complicated. Two organizations cooperate to administer the contents

of the root zone. This is a relationship that goes back, ultimately

predating the existence of ICANN. So, it’s 20 years plus. The predecessor

to ICANN had this role, and the predecessor to Verisign had this role as

well.

So, ICANN, via something called the IANA functions, does part of the

process. Verisign, via a role called the root zone maintainer, does the

other part of the process. I’m talking about the contents of the root

zone. I’m talking about the root zone file itself. That is administered by

ICANN and Verisign in those two roles.

BARCELONA – How It Works: DNS Fundamentals EN

Page 35 of 50

Then, we have the root servers themselves, the actual authoritative

name servers on the Internet that load the root zone file and answer

your queries. So, the root name servers are operated by 12 different

organizations. So, remember, the root servers are named A through

M.root-servers.net. So, these are those 13 letters. Then, these are the 12

organizations that operate them. There are 12 instead of 13 because

Verisign is the one operator that operates two. They operate A and J.

The reason for that is complicated and happened a long time ago. But,

Verisign operates two.

So, if you look at this list, what’s interesting is that we have commercial

organizations, educational institutions, organizations inside the U.S.,

organizations outside the U.S. We have some U.S. government there.

We have ISPs. We have a little bit of everything.

So, if I gave you a sheet of paper and I said, “I want you to write down

12 different organizations that have nothing in common,” you would be

hard-pressed to get a better list than this. The only thing that these

organizations have in common is that they run a root name server. This

is kind of unusual because most zones have one organization running

the authoritative servers.

Let’s take ICANN.org. So, ICANN.org is run by ICANN. ICANN runs all of

the authoritative servers for ICANN.org. That’s how it works. Sometimes

you outsource it to a DNS provider. But, still, one organization is

ultimately responsible for all the authoritative servers for a zone. The

root zone is different and special in that way in that we have these

BARCELONA – How It Works: DNS Fundamentals EN

Page 36 of 50

twelve different organizations running the authoritative servers for the

zone. The reason for that is complicated as well.

Very briefly, the history is that, when DNS was first getting going,

somebody had to run these things, had to run the root servers and other

top-level domain servers. So, a guy named Jon Postel, who was an early

Internet pioneer and ran the IANA functions long before ICANN even

existed to run them, realized that we were going to need root server

operators, people to run root servers – these critically important servers

– for this new thing called DNS.

So, he went around to people he trusted who knew what they were

doing, who had the resources and good networks, and he said, “Hey,

would you run a root server?” They said yes. This is a slight

oversimplification of history, but that basically led to the list that you

have here, at least up through I – no. Actually, the whole thing. So,

basically, it was informal agreements, being asked by Jon Postel, that

led to this list of organizations being root server operators.

Then, unfortunately, Jon Postel died tragically too early, almost exactly

20 years ago. So, because of the complexities here – this is just when

the Internet was becoming more commercial and things were getting

more complicated – it has been very hard to change this list of

operators. Nobody has really known how to do it. Just now, it’s RSSAC,

the Root System Advisory Committee, has spent a lot of work, a lot of

time, and a lot of effort coming up with the processes to finally talk

about, “Well, how would we change this list? How would we add an

operator? How would we remove an operator?”

BARCELONA – How It Works: DNS Fundamentals EN

Page 37 of 50

So, this is an example of one of those things that has been this way on

the Internet for a long time. It just is this way because it is, because it

has always been that way. That doesn’t mean it can’t change. It just

means that that is the way it is today.

So, the root server operators collaborate to run the root-servers.org

website, where you can find out more about the root servers as a whole,

including this map showing where they all are.

Now, there are more than 13 dots on that map. The reason is that there

are more than 13 physical locations where there’s a root server. Root

servers make use of a technique called IP Anycast that let’s you take a

server and, rather than have a name server with an IP address appear

in one place, it can appear in multiple places on the network.

Using that technique there are, today, around 1,000 what we call root

server instances. So, there are 1,000 root server instances. There 1,000

physical places where you can contact a root server and it can give you

a response.

So, the root zone is by far the most well-provisioned zone on the entire

Internet. There are more root servers than there are any other

authoritative servers for a given zone.

One last slide on this. At a very high level, and as I want to have the

disclaimer in the upper right that this is a gross oversimplification of the

actual process, here is how the process for changing the root zone goes.

So, the information in the root zone is all about TLDs because the root

zone delegates to top-level domains. So, it makes sense then that the

BARCELONA – How It Works: DNS Fundamentals EN

Page 38 of 50

organizations that would want to make changes to the root zone are

the TLD managers.

So, when a TLD manager wants to make a change to the root zone – and

this is a pretty small list of changes. It would be adding a name server

for their TLD, removing a name server for their TLD, changing a name

server’s name, changing a name server’s IP address.

So, that doesn’t happen very often, those things, but when it does

happen and a TLD manager needs the root zone to change, it submits a

change to the IANA functions operator. The IANA functions operator has

a root zone database with information, including metadata about who

the operator is, who the contacts are – things like that. So, the IANA

updates its root zone database, and it does a bunch of checks to make

sure that the request is legitimate.

Then, it sends that request to the root zone maintainer, which is

Verisign. Verisign has its own root zone database. It changes the

database accordingly. It creates a root zone file.

What I don’t show here is that there’s a process to cryptographically

sign the information in the root zone file with DNSSEC. That happens as

well. Then, Verisign makes that root zone available via its root zone

distribution network. That’s a set of servers all over the world that one

can get the root zone from.

But, not just anybody can get the root zone from that. It’s designed for

only the root servers themselves, A through M. I’ve just represented

BARCELONA – How It Works: DNS Fundamentals EN

Page 39 of 50

them like this. But, of course, remember, there are 1,000 boxes in that

lower level, not just 13.

So, this is how you can see the two roles Verisign has in this process.

They are the root zone maintainer in the big box in the middle. They

maintain the contents of the root zone. They are also the operators of

two out of the 13 authoritative root servers.

All right. So, that’s the root zone. I could talk much more about it. I will

restrain myself. But, that’s pretty important to the resolution process.

So, speaking of the resolution process, let’s go through it. Let’s show

how it works. So, let’s run an example. So, here we have – could you…

So, here’s an example. We have our iPhone here. Somebody has

brought the web browser, the Safari icon down there in the lower left,

and they say, “I want to go to www.example.com,” so they type that

into their phone.

So, the Safari web browser says, “All right. I need the IP address for that

name if I’m going to contact that web server.” So, it calls the stub

resolver, which is provided by iOS, the iPhone operating system, and it

says, “All right. Here’s a domain name. Get me the IP address.”

So, the stub resolver, when that iPhone came on the network, when it

got its IP address, got some other configuration information, including

the IP addresses of recursive name servers. So, one of the things you get

when a machine comes up on the network as part of your configuration

is the configuration for the stub resolver. You get IP addresses that tell

the stub resolver where to go.

http://www.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 40 of 50

So, in this case, the stub resolver is configured to go to the recursive

resolver at 4.2.2.2. Anyway, I hope I got all the two’s in there. So, the

stub resolver then now sends a DNS query to the recursive resolver, and

it says, “I’m looking for the IP address of www.example.com.” What it’s

really saying is, “I need the A records for www.example.com.”

So, to make this example more interesting, because of caching, we’re

going to assume that there is no caching involved. We’re going to

assume that this recursive resolver has just started up. So, the only

thing it knows – it read the root hints file back here. So, this is all it

knows. All it knows is the name and IP addresses of the root servers.

So, this recursive resolver, when it gets this query, has to start at the

root. So, it sends a query to one of the root servers. There are 13. They’re

equivalent, so it picks one at random. Different recursive resolvers,

different kinds of software, follow different algorithms to choose

authoritative servers. That’s beyond the scope of this class as well.

But, let’s just say that this recursive resolver chooses l.root-servers.net

and it sends it a DNS query. You can see that the DNS query it sends it is

exactly the same one that the stub resolver sent it. It says, “Do you have

the A record for www.example.com?”

Now, the root server here does not have the A record for

www.example.com. It doesn’t even know about example.com. It does

know about com, however, because the root zone delegates to the dot-

com zone.

http://www.example.com/
http://www.example.com/
http://www.example.com/
http://www.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 41 of 50

So, the root server here will send back the best information that it has

to the recursive resolver. It’s going to send back what’s called a referral.

It’s going to say, “Well, here are the name servers for dot-com. That gets

you in the right direction. Go ask one of them.”

So, the recursive resolver caches that information, and then it sends a

query to one of the dot-com servers. I remember that, early in the class,

I showed you the list of what the dot-com servers are. There are actually

13 of those as well, and they are named similarly to the root servers,

which is potentially confusing. They are named gtld-servers.net, A

through M.

So, the recursive resolver picks at random c.gtld-servers.net, a dot-com

server. It asks it the same question again. It says, “I’m looking for the A

record for www.example.com.”

Now, the dot-com server does not know the address for

www.example.com, so it can’t answer the final answer. It does,

however, know the name servers for example.com because, remember,

the dot-com zone is full of delegations to second-level domains under

dot-com. So, the dot-com server definitely knows the name servers for

example.com. So, it returns in a referral listing the name servers for

example.com.

So, now the recursive resolver caches that, and it contacts on of those

name servers. Let’s say it picks ns1.example.com, and it asks for the

third time for the IP address for www.example.com.

http://www.example.com/
http://www.example.com/
http://www.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 42 of 50

Now, in this case, example.com is authoritative for the zone that

contains that record, so it can say, “Yes. I can answer that. Here is the IP

address for www.example.com.” The recursive resolver caches that,

and then it returns it to the stub resolver, which returns it to the

application that has been waiting.

That is the resolution process. That is the most simple way that it goes.

It can be considerably more complicated.

Let me run another example. Caching really speeds this up because, as

I noted, after that previous query, the recursive resolver, 4.2.2.2, has

been caching things, and it now knows the names and IP addresses of

all the dot-com servers, the names and IP addresses of all the

example.com servers, and specifically the IP addresses for

www.example.com.

So, now, let’s say there’s another immediately following the first, and

this time it’s to go to ftp.example.com. So, the stub resolver follows the

same process. It constructs a DNS query and sends it to 4.2.2.2, the

recursive resolver.

But, this time, the recursive resolver can say, “Well, I know how to

contact the example.com servers, so I can just contact an example.com

server directly. I don’t have to do all that other stuff.” Then, it can get

the answer and return it to the client much faster.

So, you can see that a given recursive resolver is not going to have to

contact the root servers very much because, at this point, they’re like, I

want to say, 1,600 TLDs. About that. So, the recursive resolver is only

http://www.example.com/
http://www.example.com/
ftp://ftp.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 43 of 50

going to contact a root server when it encounters a query for a TLD that

it hasn’t heard of before and that the time-to-live values on the records

in the root zone are 48 hours – again, for historical reasons. So, a given

recursive resolver isn’t going to have to contact the root servers that

often.

However, there are a lot of recursive resolvers, so the root servers are

very busy. They just are busy from queries from all over the place.

The way that this process can complicated is that these referrals – let

me go back a little bit to give a specific example. Let’s take a look at this

referral right here. So, the dot-com server is giving back the name

servers for example.com. If the name servers for example.com are all in

example.com – let’s say they’re ns1.example.com and

ns2.example.com – then the dot-com also knows those name server IP

addresses. That’s called glue. That’s that thing that I skipped over

pretty quickly.

But, in that case, the referral is completely self-contained. It contains

the name of the name servers and all the IP addresses for those name

servers. So, the recursive resolver can go immediately to the next step,

as I showed in the example.

But, it doesn’t have to be that way. You can name your name servers

anything. So, what if the name servers for example.com were in isp.net?

Let’s say that example.com outsources its name server to a third party.

This is very, very common.

BARCELONA – How It Works: DNS Fundamentals EN

Page 44 of 50

In this case, the referral from dot-com is going to say, “Here are the

name servers for example.com. They’re named in isp.net.” The dot-com

server does not know the IP addresses for isp.net.

So, now the recursive resolver says, “Well, I know the names of the

name servers for where I need to go, but I don’t know their IP

addresses.” So, now the recursive resolver has to put this query on hold,

and it has to resolve the names of those name servers in isp.net.

Well, what if the isp.net zone’s name servers are named in yet some

other zone? Which is entirely possible. So, you can see how this gets

more complicated. The recursive resolver has to have multiple queries

going at once on the stack to satisfy dependencies of other queries. So,

showed you the most simple example.

Recursive resolvers are complicated pieces of software. They’re

considerably more complicated than authoritative servers. You can

write a fully functioning authoritative server in under 2,000 lines of C++,

but you can’t do that for a recursive resolver. It’s considerably more

involved.

All right. And that is the end of my slides. We have about ten minutes.

We go until 10:15. So, if anybody has any questions, I’d be happy to

answer them. Or, you could just sit and be kind of overwhelmed. It’s up

to you.

Okay. If you could please come to the mic.

BARCELONA – How It Works: DNS Fundamentals EN

Page 45 of 50

UNIDENTIFIED FEMALE: A reminder, please. Please state your name and your affiliation. Thank

you.

UNIDENTIFIED MALE: There we go.

COLE QUINN: Right there. Okay. I’m Cole Quinn with Microsoft. A quick question

about reverse mapping. If you do have an IPAM platform that’s

managing all your reverse zones –

MATT LARSON: Yeah. IPAM is IP Address management. It’s a class of software.

COLE QUINN: Yeah. It is an all or nothing thing? Like, if you decided to go down the

PRT route and made sure that there’s a PTR record for each record, is it

all or nothing? Or, is there some benefit from having PTR records for

some of your A records in your forward zones but it doesn’t necessarily

need to be 100% mapped back and forth?

MATT LARSON: That’s a good question. The answer is, I think it’s the rare organization

that has reverse mapping for every single one of its IP addresses.

 Well, for one thing, most IP address space is not statically allocated.

Look, there’s huge net blocks that ICANN owns to service the Wi-Fi

BARCELONA – How It Works: DNS Fundamentals EN

Page 46 of 50

networks at an ICANN meeting. But, there aren’t the same machine that

those IP addresses – it’s all of our laptops, and they’re moving around

the entire time.

 So, for this big chunk of address space for ICANN, the possible machines

at those IP addresses are going to change all the time. So, there’s really

no point in trying to have a name associated with those IP addresses in

those dynamic ranges.

 On the other hand, for things like mail servers and web servers that stay

where they are, that don’t have variable addresses – pieces of network

gear, like routers that, again, stay where they are – those are the kinds

of infrastructure devices, infrastructure IPs, that you typically do have

PTR records for that do reverse map to names.

 Was there another question?

FIRDAUSI FIRDAUS: Thank you. My name is Firdausi. I’m from Universität de Barcelona. I’m

a bit a new at this, but I’m kind of curious. If, for example, because I saw

that, from the list that you made about the root servers and operators

for addresses or something like that – I was wondering when, for

example, for law enforcement and something like that, when it’s

concentrated in one country, an area or something, how easily, if we

need something – I don’t know the technical stuff – but is it important

as [inaudible] and so on – how do we get this?

 Is it like we need to maybe contact the government or contact ICANN

directly? Or, how does it work?

BARCELONA – How It Works: DNS Fundamentals EN

Page 47 of 50

 I’m also kind of curious about some of the important data. Do you have

a kind of data retention policy? You mentioned that there is a server

that runs the databases for the IP addresses and so on. So, could you

tell me about this? Because I’m not really from a technical background.

I’m more from a legal background. So, maybe briefly. Thank you.

MATT LARSON: Sure. My colleague, John Crain, is the better person to talk about the

law enforcement angle to all this and how law enforcement interfaces

with all of the domain name provider ecosystem to get information that

they need, whether it’s from registrars, registries, or ICANN.

 Typically, the information that ICANN has is relatively level. It’s about

the top-level domain administrators, and that information is all well-

known and public. It tends to be the registries or the registrars that have

information about specific domain names that law enforcement might

be interested in.

 I apologize. I can’t speak in any level of detail about the processes that

law enforcement follows to contact registries and registrars.

 As for data retention, ICANN spent as much as effort as everyone else, if

not more, on GDPR compliance to get on the right side of that. So, while

I am not a lawyer and I don’t even play one at ICANN meetings, I do

know that we spent a lot of time and energy to confirm that we’re

compliant with not only GFPR but with whatever other data retention

legal frameworks there are.

BARCELONA – How It Works: DNS Fundamentals EN

Page 48 of 50

 So, I just simply don’t know enough information to comment

specifically, but I’m confident that our legal department has done all

the right things there.

 Any other questions?

JOAO PEDRO: Hello. My name is Joao Pedro. I’m with the NextGen program. You

mentioned, in the parameters, the ones that usually we don’t see but

can be used for security. So, [it’d be] a protocol in the upper layer.

 My question is, using UDP as the transfer protocol, does it guarantee the

same security? What kind of things would be involved to guarantee that

we couldn’t spoof the website name?

MATT LARSON: I will talk in three minutes about DNS security. You mentioned UDP. So,

for the most part, all the transport for DNS queries is what we call UDP,

which is much simpler than TCP. TCP actually sets up an association, a

connection, between two machines, and there’s a formal protocol to

exchange information that they follow.

 UDP is much simpler. It’s one machine blasting a packet at another

machine. So, most DNS queries: one packet over UDP. Most DNS

responses: one packet over UDP.

 So, what that means is that it’s possible for a bad guy to send a response

spoofing the IP address, pretending to be the IP address.

BARCELONA – How It Works: DNS Fundamentals EN

Page 49 of 50

 In this example here, there are ways that a bad guy could impersonate

ns1.example.com with the wrong answer, a malicious answer, and that

the recursive resolver would cache that and return it to the stub

resolver.

 Now, it’s not easy, but it is possible. That’s been a fundamental issue

with the DNS protocol since the very beginning, which is why, not long

after DNS was invented, we started talking about, “All right. How do we

layer security on top of this?” That’s where the DNS security extensions

come from. That adds cryptography to all this. So, all data in DNS gets

a digital signature.

 This response here, for example, would be not only the IP address for

ftp.example.com, but it would be a digital signature over that address.

Then, the recursive resolver could choose to validate that digital

signature to confirm that the answer is legitimate.

 Now, that’s the quickest version of DNSSEC that anyone has ever

explained because it’s a lot more complicated than that. Every zone in

the tree has a public-private key pair that it uses to sign its data. Parents

sign the keys of their children. You thought recursive resolvers were

complicated before DNSSEC? Add cryptographic validation on top of

that and they get even more complicated.

 But, ultimately, that is the solution to this. When you have a protocol

based on UDP, like DNS is, it’s very easy to slip in extra packets and try

to maliciously confuse the actors. The only way around that, the way

that we found with DNS, is DNSSEC, to layer on security using

cryptography and to make digital signatures and to verify them. It adds

ftp://ftp.example.com/

BARCELONA – How It Works: DNS Fundamentals EN

Page 50 of 50

a considerable amount of complexity, but it is the only way to provide

that assurance. Or, at least, it’s the way we’ve chosen to provide that

assurance.

 Well, I think we’re about out of time, so thank you very much. I’ll be here

for a few more minutes if you have any questions you want to ask me

directly. So, thank you.

UNIDENTIFIED FEMALE: Thank you, everyone. A reminder that, in about 15 minutes, our next

How It Works session on understanding DNS abuse will be here in this

room at 10:30. That will be presented by Bryan Schilling, the Consumer

Safeguards Director at ICANN.

 So, you have a few minutes to stretch your legs and come back. Hope

to see you then. Thank you, again.

[END OF TRANSCRIPTION]

