
RDAP implementation experience at .it!

Mario Loffredo, Maurizio Martinelli!
IIT-CNR/.it Registry!

mario.loffredo, maurizio.martinelli@iit.cnr.it!

ICANN65 Tech Day, Marrakech, June 24, 2019

Overview!

n RDAP applications:!

•  Validator!

•  Crawler!
!

•  Server!
!

•  Client!

n Future activities!

RDAP validator!
n  Verifies the response compliance with both RDAP and jCard

specifications!
!
n  Based on JSON Schema draft-07!

•  https://json-schema.org/!

n  Developed in Java!
•  https://github.com/everit-org/json-schema!
!

n  Takes in consideration so many RFCs and standards:!
!

•  RDAP: 7480, 7481, 7482, 7483, 7484, 8056!
!
•  jCard: 6350, 6473, 6474, 6715, 6969, 7095, 8605!
!
•  And then: ISO.3166.1988, ISO.8601.2000, ISO.8601.2004,!

CCITT.X520.1988, 3282, 3339, 3986, 4034, 5396, 5545, 5646, !
5910, 5952, 5980, 5988, … !

RDAP crawler (1)!

n  Based on the RDAP validator!
!
n  Checks the responses from the servers

included in IANA Bootstrap Service Registries!
!
n  Validation in three steps:!

•  Parsing!
•  Validation against the standard profile!
•  Validation against the gTLD profile (in progress)!

•  RDAP Technical Implementation Guide!
•  RDAP Response Profile!

!
!

RDAP crawler (2)!

n  So far the following issues have been discovered:!
•  about jCard:!

•  required fn element is not returned!
•  only the version element is returned!
•  tel element including uri type returns an invalid URI value!
•  address returned as the value of the label parameter in adr element but the adr value is null instead of an array of empty strings (i.e. [“”,

 ””, ...])!
•  lang element value returned in uppercase instead lowercase!
•  country code parameter (RFC8605) named “CC” instead of “cc”!
•  kind element value is “organization” instead of “org”!

•  about the standard profile:!
•  coded values (e.g. role, status, event action) are unregistered !
•  errorCode in error response is returned as String instead of Number!
•  IP network start/endAddress is formatted as a network instead as an address!
•  rdapConformance is missing!
•  server sets Content-type to “text” instead of “application/

rdap+json	

RDAP crawler (3)!

•  about the gTLD Profile:!
•  IANA Registrar ID is unregistered!
•  domain registrar abuse contact is missing!
•  some coded values are misspelled (e.g. domain status

notice and RDDS Inaccuracy notice)!

•  general:!
•  server doesn’t return an answer!
•  server doesn’t return a valid content!

RDAP server (1)!
n  A challenging mapping between .it data model and

RDAP data model has been required!
!
n  Only authenticated users are allowed to submit search

queries!

n  Different contents according to users’ profile!

n  Bootstrapping support!

n  Based on .it public test environment registration data!

n  Available at https://rdap.pubtest.nic.it!

RDAP server (2)!
n  Several extensions have been implemented:!
!

•  counting, sorting and paging!
–  draft-ietf-regext-rdap-sorting-and-paging-03!

•  partial response!
–  draft-ietf-regext-rdap-partial-response-02!

•  reverse search!
–  draft-ietf-regext-rdap-reverse-search-01!

•  advanced searching and filtering !
!
•  new contact representation!

–  draft-stepanek-jscontact-01 !

•  domain suggestion!

•  specification!

•  …!

Counting, sorting and paging !
n  New parameters:!

•  count: allows the user to obtain the total number of results!
•  sort: allows the user to sort the results!
•  cursor: an opaque string representing a pointer to a specific fixed

size portion of the result set!
•  The pagination information is encoded (e.g. offset/limit, keyset)!

!
n  New properties:!

•  sorting_metadata: includes information about both current and
available sort criteria!

•  paging_metadata: includes the total number of results, and paging
information!

!
n  RDAP conformance!

•  sorting_level_0!
•  paging_level_0!

sorting_metadata: sample!
{
 "rdapConformance": ["rdap_level_0", "sorting_level_0"],
 ...
 "sorting_metadata": {
 "currentSort": "ldhName",
 "availableSorts": [
 {
 "property": "registrationDate",
 "jsonPath": "$.domainSearchResults[*].events[?(@.eventAction==\"registration\")].eventDate",
 "default": false,
 "links": [
 {
 "value": "https://example.com/rdap/domains?name=*nr.com&sort=ldhName",
 "rel": "alternate",
 "href": "https://example.com/rdap/domains?name=*nr.com&sort=registrationDate",
 "title": "Result Ascending Sort Link",
 "type": "application/rdap+json"
 },
 ...
]
 },
 ...
]
 },
 "domainSearchResults": [
 ...
]
} !
!
n  REQUIRED: property !
n  OPTIONAL: currentSort, availableSorts (at least one must be present)
n  RECOMMENDED: jsonPath, default, links
!

paging_metadata: sample!

!

n  OPTIONAL: totalCount, links (at least one must be present)
n  RECOMMENDED: pageCount

{
 "rdapConformance": ["rdap_level_0", "paging_level_0"],

 ...

 "notices": [

 {

 "title": "Search query limits",

 "type": "result set truncated due to excessive load",

 "description": ["search results are limited to 10"]

 }

],

 "paging_metadata": {
 "totalCount": 73,
 "pageCount": 10,
 "links": [
 {

 "value": "https://example.com/rdap/domains?name=*nr.com&count=true",

 "rel": "next",

 "href": "https://example.com/rdap/domains?name=*nr.com&cursor=wJlCDLIl6KTWypN7T6vc6nWEmEYe99Hjf1XY1xmqV-M=",

 "title": "Result Pagination Link",

 "type": "application/rdap+json"

 }

]
 },

 "domainSearchResults": [

 ...

]

}

Partial response!
n  The client declares a server pre-defined set of data fields instead of declaring

explicitly the data fields!

n  New parameter:!
•  fieldSet: is a string identifying a server pre-defined set of fields!

!
n  Recommended field sets:!

•  id: contains only the key field (i.e. "handle" or "ldhName”)!
•  brief: identifies a set of fields conveying a basic knowledge of each object!
•  full: contains all the information the server can provide for a particular object!
!
n  NOTE:!
•  Field sets might be provided according to users access levels
•  Server MAY add any service information (e.g. notices) and implement additional field sets
•  Servers SHOULD also define a "default" field set
!
!

n  New properties:!
•  subsetting_metadata: includes information about both current and available field

sets!
!
n  RDAP conformance!

•  subsetting_level_0!

subsetting_metadata: sample!
{
 "rdapConformance": ["rdap_level_0", "subsetting_level_0"],
 ...
 "subsetting_metadata": {
 "currentFieldSet": "brief",
 "availableFieldSets": [
 {
 "name": "id",
 "description": "Contains only the key field",
 "default": false,
 "links": [
 {
 "value": "https://example.com/rdap/domains?name=*nr.com&fieldSet=brief",
 "rel": "alternate",
 "href": "https://example.com/rdap/domains?name=*nr.com&fieldSet=id",
 "title": "Result Subset Link",
 "type": "application/rdap+json"
 }
]
 },
 ...
]
 },
 "domainSearchResults": [
 ...
]
} !
!

n  REQUIRED: name !
n  OPTIONAL: currentFieldSet, availableFieldSets (at least one must be present)
n  RECOMMENDED: description, default, links

Reverse search!

n  New paths:!
•  domains?entityHandle=<reverse search pattern>!
•  domains?entityFn=<reverse search pattern>!
•  domains?entityEmail=<reverse search pattern>!
•  domains?entityAddr=<reverse search pattern>!

n  <reverse search pattern> is a JSON object including two members: !
•  value: represents the search pattern to be matched by the

corresponding entity property. It can be:!
•  for the first three paths, a string!
•  for the fourth path, a JSON object, in turn, containing the information described in

RFC 5733 !

•  role: is a string whose possible values are those detailed in RFC 7483!

•  NOTE: value is REQUIRED, role is OPTIONAL!

Revserse search samples!

entityHandle={"value":"CID-40*","role":"administrative"}

entityFn={"value":"Bobby*","role":"registrant"}

entityEmail={"value":"loffredo@example.com","role":"technical"}

entityAddr={"value":{"cc":"CA"},"role":"registrar"}

!

Privacy considerations!

n  The use of this capability MUST be compliant with the rules about
privacy protection each RDAP provider is subject to!

n  Sensitive registration data MUST be protected and accessible for
permissible purposes only!

n  RDAP servers MUST provide reverse search only to those
requestors who are authorized according to a lawful basis!

n  Scenarios:!

•  Registrars searching for their own domains!

•  Operators in the exercise of an official authority or performing a specific
task in the public interest that is set out in law!

•  Reverse searches only on those contacts that have previously given the
explicit consent for publishing and processing their personal data!

Advanced searching and filtering!

n  New parameters:!
•  query: allows the user to submit a complex search!

•  Must be used in place of a RDAP search path (e.g. domains?name)!
!
•  filter: allows the user to filter the results according to the values of

those RDAP properties that are not used as search path segments (e.g.
status)!

•  Can be used in addition to either a search path or the query path!
!

n  New properties:!
•  filtering_metadata: includes information about the available filters!

!
n  RDAP conformance!

•  filtering_level_0!

query & filter samples!

domains?name=we*.it&filter=["registrationDate","ge","2018-01-20"]

domains?name=we*.it&filter={"or":[["registrationDate","ge","2018-01-20"],

["expirationDate","le","2019-01-20"]]}

name=we*.it&filter={"not":{"or":[["registrationDate","ge","2018-01-20"],

["expirationDate","le","2019-01-20"]]}}

domains?name=wu*it&filter=["transferDate","isnull"]

domains?query=[["name","eq","test-*.it"],["nsLdhName","eq","wns1.rtr-dev.com"]]

domains?query=[["name","eq","test-*.it"],

["entityAddr","eq",{"value":{"cc":"be"},"role":"registrant"}]]

&filter={"or":[["registrationDate","ge","2018-01-20"],

["expirationDate","le","2019-01-20"]]}

filtering_metadata: sample!
{

 "rdapConformance": ["rdap_level_0", "filtering_level_0"],
 ...
 "filtering_metadata": {
 "availableFilters": [
 {

 "property": "registrationDate",
 "jsonPath": "$.domainSearchResults[*].events[?(@.eventAction==\"registration\")].eventDate"

 }, {
 "property": "lastChangedDate",
 "jsonPath": "$.domainSearchResults[*].events[?(@.eventAction==\"last changed\")].eventDate"

 },
 {

 "property": "expirationDate",
 "jsonPath": "$.domainSearchResults[*].events[?(@.eventAction==\"expiration\")].eventDate"

 },
 {

 "property": "status",
 "jsonPath": "$.domainSearchResults[*].status"

 },
]
 },
 "domainSearchResults": [
 ...
]
} !
!
n  REQUIRED: property !
n  OPTIONAL: currentFilter, availableFilters (at least one must be present)
n  RECOMMENDED: jsonPath
!

JSContact representation!
n  New parameter:!

•  jscontact: allows the user to obtain a more efficient contact
represesentation than jCard. Default is jscontact=false!

!
n  New properties:!

•  jscontact: replaces the vcardArray element !
!
n  RDAP conformance!

•  jscontact_level_0!

By using jCard (jscontact=false)!
{
 "rdapConformance": ["rdap_level_0"],

 ...
 "vcardArray" : [
 "vcard",
 [

 ["version", { }, "text", "4.0"],
 ["fn", { }, "text", "ccTLD '.it' Registry - IIT/CNR"],
 ["kind", { }, "text", "org"],

 ["org", { }, "text", "ccTLD '.it' Registry - IIT/CNR"],
 [
 "adr",
 { "cc": "it" },

 "text",
 ["", "", "Via Giuseppe Moruzzi 1", "Pisa", "PI", "56124", "Italy"]
],
 ["tel", { "type": "voice" }, "uri", "tel:+39.0503139811"],

 ["email", { }, "text", "hostmaster@nic.it"]
]
],

 ...
}

By using JSContact
(jscontact=true)!

{
 "rdapConformance": ["rdap_level_0", "jscontact_level_0"],
 ...
 "jscontact": {
 "kind" : "org"
 "fullName": "ccTLD '.it' Registry - IIT/CNR",
 "organization": "ccTLD '.it' Registry - IIT/CNR",
 "addresses": [
 {
 "type": "work",
 "fullAddress": "Via Giuseppe Moruzzi 1 Pisa PI 56124 Italy IT ",
 "street": "Via Giuseppe Moruzzi, 1",
 "locality": "Pisa",
 "region": "PI",
 "postcode": "56124",
 "country": "Italy",
 "countryCode": "it"
 }
],
 "phones": [
 {
 "type": "work",
 "value": "+39.0503139811"
 }
],
 "emails": [
 {
 "type": "work",
 "value": "hostmaster@nic.it"
 }
]
 },
 ...
}

Domain suggestion!
n  New parameter:!

•  searchtype: “suggestion”!
!

n  NOTE:!
•  This search is allowed only for the “domains?name” path !
•  The search pattern MUST be a domain name in LDH or U-label format!
•  Partial matching is not allowed!

n  Additional parameters:!
•  language: one of the values described in RFC 5646. Each RDAP provider can define a default

value!
•  maxLength: the maximum length of the domain without considering TLD suffix. Range [1-63]!
•  useHypens: if hyphens will appear in resulting domain suggestions. Default is false!
•  useNumbers: if digits 0-9 will appear in resulting domain suggestions. Default is false!
•  useIdns: if IDNs will appear in resulting domain suggestions. Default is false!
•  showRegistered: if registered domains will appear in resulting domain suggestions. Default is

false!
•  showCensurable: if all objectionable domain will be included in the response. Default is false!
!
n  Sample:!

domains?name=carwash.com&searchtype=suggestion&language=en!
!
n  The response is provided according to the “id“ field set!

Specification (1)!
n  A REST service should provide clients with a machine-processable specification to

describe:!

•  the requests in terms of available paths, parameters and bodies!
•  the responses in terms of returned properties and values!
•  the authentication methods!

n  New endpoint:!
•  specification!

n  Bootstrapping is implemented through the method as described in RFC8521 (i.e.
specification/{RDAP-provider-tag})!

n  Specifications can be provided according to different REST API specification languages:!
•  OpenAPI!
•  RAML!
•  APIBlueprint!
•  JSON Schema!
•  …!

n  Each specification language has its own:!
•  format!
•  media type for its delivery as a REST response!
•  set of tools covering every phase of the API life cycle (design, build, test, documentation and

sharing)!
!

Specification (2)!
n  Server:!

•  provides a machine-processable specification of:!

•  the URI templates of non-standard path segments!
•  the description and the formal constraints for each property or value extending the response!
•  the supported authentication methods!

!
•  can announce to clients any change about its capabilities and make it suddenly available!

 !
n  Client:!

•  can configure itself, according to any server specification and user access level!

•  enables the user to submit only valid requests!

•  displays and validates the responses more efficiently!

•  can adopt open source software dedicated to validation, data parsing, requests handling
and user interface generation!

Specification response sample!
{
 "rdapConformance" : ["rdap_level_0"]

 "notices" : {

 "title" : "Server specification",

"description" : ["The list of specifications available for this
RDAP server according to different formats"],
"links" : [

 {

 "value" : "http://example.com/rdap/specification",

 "rel" : "describedby",

 "title" : "OpenAPI-JSON",

 "type" : "application/vnd.oai.openapi+json",

 "href" : "http://example.com/rdap/specification/openapi.json"

 },

 …

]

 }

}

RDAP Client (1)!

n  RDAP servers:!

•  can be pretty different in both requests and responses!
•  can’t provide a machine-processable description of their own features!

n  Current RDAP clients:!

•  are based on RFC7482!
•  provide users with fixed capabilities!

n  As a consequence:!
!

•  users might waste time submitting requests that can’t be accepted because they are not
implemented by the server or because they are not allowed, according to the user access level!

!
•  users/clients must know the features of all the servers they interact with!
!
•  if a server changes its features, such a change is not immediately recognized by clients and,

normally, it requires an additional effort by client implementers!
!
•  if the standard response is extended with some additional properties or values, the client can’t

provide users with their on-line description!
!
•  responses cannot be formally validated according to a specification (as in EPP by using XML

schemas)!

!
!

RDAP Client (2)!
n  How about implementing a client able to configure itself according to a server

specification?!

•  It would be based on server “specification“ extension!

•  Specifications could be automatically converted!

•  Client UI would be automatically generated!

n  Processing steps:!
!

user selects the target server;

the specification is requested to the server;

if (no specification is available)
 RFC7482 is loaded
else
 if (no specification format is OpenAPI)
 the specification is converted in in OpenAPI;

the client UI is generated by the Swagger-UI library;
!

n  Development still in progress!
!
!
!

Future activities!

n  Moving forward current IETF drafts!

n  Evaluating the submission of new IETF drafts!

n  Contributing to fix/replace jCard!

n  Completing the crawler validation against the
RDAP gTLD profile!

n  Completing the client!

n  Migrating the server on live environment!

