

The Internet of Things and the DNS Jacques Latour / SSAC

ICANN65 | June 2019

Security and Stability Advisory Committee (SSAC)

Who We Are

39 Members

Appointed by the ICANN Board

What is Our Expertise

- Addressing and Routing
- DNS & DNSSEC
- Registry & Registrar Operations
- ISP & Network Operations
- DNS Abuse & Cybercrime
- Internationalization
- ICANN Policy and Operations

What We Do

Role: Advise the ICANN community and Board on matters relating to the security and integrity of the Internet's naming and address allocation systems.

How We Advise

105 Publications since 2002

<u>Agenda</u>

Introductions IoT and the DNS Opportunities for the DNS 6 Challenges for the Risks to the DNS Q & A DNS and IoT posed by IoT Industries

SAC105: The DNS and the Internet of Things

- SAC105: The DNS and the Internet of Things: Opportunities, Risks, and Challenges, published June 3rd, 2019
- A different kind of SSAC report:
 - No recommendations to the ICANN Board
 - A tutorial-style discussion intended to trigger and facilitate dialogue in the broader ICANN community
 - More forward looking than operational in nature
 - Partly within SSAC and ICANN's remit, but also goes beyond it
- Many aspects of our discussion are not new, except as they consider new challenges from IoT

The Internet of Things (IoT)

- Internet application that extends "network connectivity and computing capability to objects, devices, sensors, and items not ordinarily considered to be computers" (ISOC, 2015)
- Examples: smart homes, smart cities, self-organizing dynamic networks of drones and robots
- Differences with "traditional" applications
 - o loT continually senses, interprets, and acts upon physical world
 - Often without user awareness or involvement (passive interaction)
 - Pervasive 20-30 billion devices operating "in the background" of people's daily lives
 - Widely heterogeneous devices (hardware, operating systems, network connection)
 - Longer lifetimes (perhaps decades) and unattended operation

IoT and the DNS

- Remote services (cloud services) assist devices in performing their task (e.g., combining and analysing data from multiple sensors)
- Measurement studies show that IoT devices use the DNS to locate remote services (e.g., sleep trackers, light switches)
- Opportunity: DNS helps fulfilling IoT's more stringent security, stability, and transparency requirements stemming from seamless interaction with physical world
- Risk: IoT stresses the DNS, accidentally (e.g., large number of devices coming online simultaneously after a power outage) or on purpose (IoT-powered DDoS attack)
- Challenge: DNS and IoT industries can seize opportunities and address risks

Role of the DNS for the IoT

Opportunities: DNS helps protect the Real World

- DoH and DoT (resolver verification and transport encryption)
 - Avoid IoT devices being redirected to malicious resolvers
 - Reduce information devices reveal about themselves
 - Protect user privacy for devices with highly specific tasks
- DNSSEC (DNS response verification)
 - Avoid IoT devices being redirected to malicious services
- Multi-Factor Authentication (MFA) to protect against domain registration hijacks
 - May affect large installed base of IoT devices
 - Attackers might invest more because IoT services become high-value targets
- Visualize DNS queries to make IoT more transparent for users
 - Services and resolvers that IoT devices use
 - Enable users to control resolvers that IoT devices use

Risks to the DNS from the IoT

- DNS-unfriendly programming at IoT scale
 - TuneIn app example → random queries filled resolver cache of mobile operator
 - Only around 700 iPhones, took three weeks for the app to get updated
 - Effects depend on factors like device concentrations and TTLs
 - Unsupported devices that operate unattended for decades
- Larger and more complex DDoS attacks by IoT botnets (Mirai, Hajime)
 - o IoT botnets currently around 400-600K bots (Mirai, Hajime), may increase in the future
 - Set of IP addresses may change quickly
 - Higher propagation rates
 - Hajime exploited a vulnerability in 10 days and increased by 50K bots in 24 hours
 - Vulnerabilities more difficult to fix quickly at scale, botnet infections go unnoticed
- DDoS amplification through open resolvers (on IoT devices)
 - 23-25 million open resolvers and amplification factors in the range 29-64

Challenges for DNS and IoT Industries (1 / 2)

- Developing a DNS security library for IoT devices
 - Such as DNSSEC validation, DoH/DoT support
 - User control over DNS security settings and insight into services that IoT devices use
 - Work on various IoT operating systems and CPU types
 - Example starting points: DNSSEC Trigger and Danish
- Training IoT and DNS professionals
 - o loT product managers: understand loT botnets and open resolvers
 - loT engineers: understand "DNS friendly" programming and security(e.g., DNSSEC)
 - DNS folks: understand IoT changes domain registration model and security
 - Example starting points: RFC4367 and "Hello DNS"

Challenges for DNS and IoT Industries (2 / 2)

- Deploying a cross-DNS operator system to share information on IoT botnets
 - Characteristics of DDoS attacks that DNS operators handle, "fingerprints"
 - Also filtering rules, bot concentrations across AS-es, botnet booters, etc.
 - Example starting points: DDoS-DB, IoT-Pot, Shadowserver's Open Resolver Scanning Project
- More advanced mitigation of very large IoT-powered DDoS attacks
 - DDOS mitigation broker that enables DNS operators to flexibly share mitigation capacity (e.g., using DOTS signalling)
 - Security systems in edge networks, such as home routers (e.g., using SPIN and SHG)
- Develop a system to measure the evolution of the IoT
 - Device-to-domain name database (e.g., based on publicly available MUD specifications)
 - o DNS operators provide coarse grained stats (e.g., counts, origin AS)

Conclusions and Future Work

- The loT is an emerging distributed Internet application expected to further ease our daily lives and make our society safer and more sustainable
- Might make the role of DNS even more important
 - IoT devices autonomously and seamlessly interact with our physical world through billions of connected sensors and actuators
- SAC105: The DNS and the Internet of Things: Opportunities, Risks, and Challenges
 - Tutorial-style overview of the DNS and the IoT as two co-evolving and interacting ecosystems in terms of opportunities, risks, and challenges
 - o https://www.icann.org/en/system/files/files/sac-105-en.pdf
- SSAC wishes to continue discussing our report with the ICANN community
- We welcome your feedback!

Thank you

