ICANN 50 Detecting Distributed DNS Attacks Utilizing Levenshtein String Distances

Nils Clausen, M.Sc. University Lecturer n.clausen@ium.edu.na

Detecting Distributed DNS Attacks Utilizing Levenshtein String Distances

Context

Statement of the Problem

Assumptions

The Levenshtein String Distance Measure

Proposed Solution

Sample Result Set

Technical Advice for Implementation

Context

- NA-NIC has turned on the protocol option on their name servers
- the protocol data gets replicated into a relational database (MariaDB)
- table na_log then contains all name server queries with timestamp (down-to-the-second granularity), client ip/ port, query name

Statement of the Problem

- NA-NIC has noticed attacks (suspicious queries) on their name servers, possibly caused by bots/viruses and misconfiguration of client networks
- Spikes in query numbers are detected for certain days
- Attacks are not only originating from an easily detectable, uniform range of clients
- Different character permutation techniques seem to be in use by attackers, that makes simple substring comparisons useless for detection

Assumptions

- Suspicious queries:
 - occur only a small number of times per distinct string
 - are systematic and show signs of "somewhat" similarity
 - can be issued from various clients (even at the same time)
 - do not necessarily produce a peak in the number of queries
- Query names, that exactly match registered domains are considered to be legitimate and can therefore be excluded from analysis

The Levenshtein String Distance Measure

- A string metric for measuring the difference between two sequences, i.e. the <u>minimum</u> number of <u>single-character</u> edits (insertions, deletions or substitutions) to transform one sequence into another
- Levenshtein, Vladimir I. (1966). "Binary codes capable of correcting deletions, insertions, and reversals". Soviet Physics Doklady
- N.B.: used by search engines for suggestions when typing errors are suspected
- Demo: <u>http://odur.let.rug.nl/~kleiweg/lev/</u>

Proposed Solution

- Take na_log as a basis, attributes query_timestamp, client_ip and query_name are of primary interest
- Do pairwise calculation of Levenshtein distances between all query_name combinations with same length
- Limit pairwise calculation to Levenshtein ratios (Levenshtein distance ÷ length of string) > 0 and < 0.3 (to exclude same-string comparisons and only include strings with high- to medium similarity)
- Derive aggregate attributes day, month, year from query_timestamp for further analysis capabilities
- Further calculations can be performed on result set, e.g. correlation metrics for cluster analysis

Illustration of Proposed Solution

Sample Result Set

					query s	tring		со	mparison	query strir	ng	
	query	year query_month	query_date	client_ip	net	iso que	name	query iame_lv	sht query_counter	lvsht_distance length	query_name I	vsht_ratio
1	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Og5eq.co.na	1	3	11	0.2727
2	2014	2014-05	2014-05-24	192.22 44.164	192.221.0.0/16	US 1cm	eq.co.na	Og8eq.co.na	1	3	4	0.2727
3	2014	2014-05	2014-05-24	4.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogaeq.co.na	1	3	11	0.2727
4	201			221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogbeq.co.na			11	0.2727
5	201	maliciau	c cliant	2.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogdeq.co.na	madium	, cimilarity	11	0.2727
6	201	manciou	schent	2.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogkeq.co.na	meulun	I SIMILATILY	11	0.2727
7	201			2.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	0gm4q.co.na			11	0.2727
8	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	0gm7q.co.na	1	5	11	0.2727
9	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmcq.co.na	1	3	11	0.2727
10	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogme7.co.na	1	3	11	0.2727
11	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmeb.co.na	1	3	11	0.2727
12	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmee.co.na	1	3	11	0.2727
13	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmeg.co.na	1	3	11	0.2727
14	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmeh.co.na	1	3	11	0.2727
15	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmen.co.na	1	3	11	0.2727
16	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmeo.co.na	1	3	11	0.2727
17	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmeq.co.na	1	2	11	0.1818
18	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmex.co.na	1	3	11	0.2727
19	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmgq.co.na	1	3	11	0.2727
20	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmnq.co.na	1	3	11	0.2727
21	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogmrq.co.na	1	3	11	0.2727
22	2014	2014-05	2014-05-24	192.221.144.164	192.221.0.0/16	US 1cm	eq.co.na	Ogoeq.co.na	1	3	11	0.2727

Sample Result Set: Further Analysis

Range of Levenshtein Ratios in Sample Set

Technical Advice for Implementation

- Pairwise comparison implies exponential cardinality of result sets and long running calculation times
- Either limit input to a few hours or days of logs based on database performance, or use in-memory database technology
- Use materialized views or tables to store intermediate result sets for faster access when using non-in-memory databases

Technical Advice for Implementation

- Download levenshtein.c
- Compile as per the file
- Install into MariaDB/MySQL Plugin Directory
- CREATE FUNCTION levenshtein RETURNS INT SONAME 'levenshtein.so';

Thank You. Questions?

