DNSSEC and DNS Proxying
DNS is hard

- at scale
- when you are a huge target
CloudFlare DNS

- is big
CloudFlare DNS

- is fast
CloudFlare DNS

- is always under attack

Enormous DNS DDoS attack originates from a mishandling of private service providers

BIGGEST DDoS ATTACK IN HISTORY hammers Spamhaus

Plucky mail scrubbers battle internet carpet bombers

By John Leyden, 27 Mar 2013

6/11/2014 05:40 PM

Wave Of DDoS Attacks Down Cloud Based Services

Feedly fends off ransom demands of its attackers.

Technical Details Behind a 400Gbps NTP Amplification DDoS Attack

Published on February 13, 2014 01:00AM by Matthew Prince.
CloudFlare

- A secure reverse proxy for http(s)
 - Change your SOA to us
 - We will point your A records to us
- We need internal and external DNS to keep track
CloudFlare

- DNS Resolver

- Q: Who is something.com? → CloudFlare External DNS
- A: CloudFlare Proxy IP
CloudFlare

- Web browser
 - Hi something.com, get me index.html → CF Proxy IP
 - CF proxy: do I have index.html cached? No.
 - CF proxy: who is something.com, really? → CF Internal DNS
 - CF Internal DNS: origin IP → CF proxy
 - CF proxy: Hi something.com, get me index.html → Origin IP
 - Origin IP: index.html → CF proxy
 - CF proxy: index.html → Web browser
CloudFlare External DNS

- Deals with attempted DDoS constantly
- Huge DNS floods of legitimate requests
 - 50+ million packets per second to one location
- Large volumetric reflection attacks
 - 300+ Gbps DNS reflection (2013, Spamhaus)
 - 400+ Gbps NTP reflection (2014)
CloudFlare External DNS

• Standard RRL not enough, need special filters
 • String matching
 • Length matching
 • Statistical approach: heavy hitters
 • Regular expressions
CloudFlare External DNS

- Other special feature: **CNAME flattening**
- Following CNAME records is slow
- Can’t CNAME the zone apex

Solution: Follow CNAME chain, transform into A or AAAA record
What to do?

• How did we solve HTTP DDoS?
 • Anycast and a reverse proxy (nginx)

• How do we solve DNS DDoS?
 • Write your own DNS server? Maybe
 • Create a DNS reverse proxy? YES
What to do?

- RRDNS: a DNS reverse proxy in Go

Why Go?
- compiled language gives great performance
- built-in concurrency
- easy to write, maintain, and make modular
What does it do?

- Acts as a transparent reverse proxy in front of an authoritative server
- Not a recursive nameserver
- Filters bad/spoofed requests, caches, load balances
- Returns the authoritative bit
- Responses look like ones from authoritative server
More advantages

• Highly dynamic
• Does not use zone files
• Automation reduces cost for operator
How we use it

• RRDNS handles both internal and external DNS
• Filter model inspired by nginx
 • SSL
 • WAF
 • Business logic
 • Cache
 • Upstream
How we use it

• **RRDNS filter**
 • front-line rate limit filtering
 • length & string matching, heavy hitter, IP reputation, geolocation, truncation test, etc.
 • request type filtering (limit to A, AAAA, CNAME, MX, etc.)
 • caching layer
 • optional authoritative module (for internal DNS)
 • upstream DNS resolution (for cache misses and CNAME resolution)
Where does DNSSEC fit in?

- Do it yourself behind the reverse proxy
- Let RRDNS take care of it
Pure Proxy DNSSEC

- Upstream manages all DNSSEC related data
- NSEC or NSEC3 records computed and served by upstream
- CloudFlare Internal DNS upstream:
 - Centralized offline signing with zone distribution over encrypted KV store

- Problems: CNAME flattening signatures unavailable
- Questions: Should proxy validate signatures from upstream?
Zone Enumeration

- NSEC or NSEC3 records computed offline
- Zone enumeration possible with NSEC
- Offline dictionary attack with NSEC3

- We want zone privacy, and CNAME flattening
- Solution: Live signing
Hybrid DNSSEC

- Upstream creates full DNSSEC zone (including NSEC3 records)
- Centralized offline signing with zone distribution over encrypted KV store
- KSK, ZSK1 used for offline signing (long lived)
- ZSK2 used for online signing of CNAME and NSEC3 white lies (short-lived)
- Under DDoS
 - serve real NSEC3 record
 - disable CNAME flattening
DNS Reverse Proxy as a service

• Large authoritative nameservers need Cloud DDoS protection, acceleration, caching

• Put CloudFlare/RRDNS in front

• What if they don’t want to set up DNSSEC?

• Use RRDNS live signing!
Live DNSSEC

- Upstream creates regular non-DNSSEC zone
- KSK created centrally, DNSKEY RRSIG distributed to edge
- ZSK created centrally, distributed to edge servers via TPM binding
- ZSK used for live signing of all records
 - Flattened CNAME and NSEC3 white lies
- Live signatures stored in shared cache within a colocation
- CloudFlare integration with registrar
Result

- Authoritative servers get DDoS protection and acceleration
- Works with already integrated DNSSEC solution
- Or flip a switch and get DNSSEC automatically
Conclusion

- DNS is hard
- DNSSEC is hard
- Special problems require custom solutions

- Let us do DNSSEC for you
- But first: we have lots of work to do