

VeriSign® White Paper: A Proposal for
DNAME Equivalence Mapping for TLD Strings

COPYRIGHT NOTIFICATION

©2005 VeriSign, Inc. All rights reserved. VeriSign, the VeriSign logo “Where it all comes together,” and
other trademarks, service marks, and designs are registered or unregistered trademarks of VeriSign and
its subsidiaries in the United States and in foreign countries. 11/05.

DISCLAIMER AND LIMITATION OF LIABILITY

VeriSign, Inc. has made efforts to ensure the accuracy and completeness of the information in this
document. However, VeriSign, Inc. makes no warranties of any kind (whether express, implied or
statutory) with respect to the information contained herein. VeriSign, Inc. assumes no liability to any party
for any loss or damage (whether direct or indirect) caused by any errors, omissions or statements of any
kind contained in this document. Further, VeriSign, Inc. assumes no liability arising from the application or
use of the product or service described herein and specifically disclaims any representation that the
products or services described herein do not infringe upon any existing or future intellectual property
rights. Nothing herein grants the reader any license to make, use, or sell equipment or products
constructed in accordance with this document. Finally, all rights and privileges related to any intellectual
property right described herein are vested in the patent, trademark, or service mark owner, and no other
person may exercise such rights without express permission, authority, or license secured from the
patent, trademark, or service mark owner. VeriSign Inc. reserves the right to make changes to any
information herein without further notice.

NOTICE AND CAUTION Concerning U.S. Patent or Trademark Rights

VeriSign, and other trademarks, service marks and logos are registered or unregistered trademarks of
VeriSign and its subsidiaries in the United States and in foreign countries. The inclusion in this document,
the associated on-line file, or the associated software of any information covered by any other patent,
trademark, or service mark rights does not constitute nor imply a grant of, or authority to exercise, any
right or privilege protected by such patent, trademark, or service mark. All such rights and privileges are
vested in the patent, trademark, or service mark owner, and no other person may exercise such rights
without express permission, authority, or license secured from the patent, trademark, or service mark
owner.

November 15, 2005

2

Abstract

RFC2672 (Non-Terminal DNS Name Redirection)1, an IETF standards track document
defines a new Domain Name System (DNS) Resource Record called "DNAME", which
provides the capability to map an entire sub-tree of the DNS name space to another
domain. This paper discusses the possibility of creating either transliterations or local
language equivalents of Top Level Domains (TLD) as ASCII Compatible Encodings
(ACE) and relying upon the DNAME construct for mapping such namespaces directly
onto existing generic and country-code TLDs. The purpose of this paper is to examine
this approach technically and to outline benefits and challenges to such an approach.

Table of Contents

I. Introduction
II. Domain Name System (DNS) overview
III. Internationalized Domain Names (IDN) overview
IV. DNAME proposal
V. Technical issues, dependencies, assumptions
VI. Policy issues and assumptions
VII. Proposal and conclusion

Appendices

1. ACE examples
2. DNAME zone entries
3. DNS tree with DNAME equivalents
4. DNAME query diagram

1 RFC 2672 (Non-Terminal DNS Name Redirection, M. Crawford, August 1999, ftp://ftp.isi.edu/in-
notes/rfc2672.txt

November 15, 2005

3

I. Introduction

The Internet is a global communication medium that has been a phenomenal catalyst
for trans-national and cross-language information exchange and interaction. The
origins of the Internet as a government-funded research network center on US and
western European organizations and the cooperative development of technical
standards. The Internet Engineering Task Force (IETF) has long been the coordination
point for authoring the basic building blocks, protocols, which are the rulebooks which
define how Internet applications and services interact. The fundamental basis of the
Internet’s protocol suite, American Standard Code for Information Exchange (ASCII),
is a character set which reflects the scripts used by its major contributors. While ASCII
can broadly represent English and Western European written languages, it is
insufficient for most of the world. The goal of this paper is to provide an overview of
the existing ASCII-based DNS, to summarize work establishing RFCs for
Internationalized Domain Names (IDN), and to examine the potential application of an
existing Internet standard to support the demand for truly internationalized DNS.

RFC2672 (Non-Terminal DNS Name Redirection), an IETF standards track document
defines a new DNS Resource Record called "DNAME", which provides the capability
to map an entire sub-tree of the DNS name space to another domain. It differs from the
CNAME record which aliases a single node of the name space. In this fashion and in
concert with RFC 3492 (Punycode: A Bytestring encoding of Unicode for
Internationalized Domain Names in Applications (IDNA)) which establishes an
approach for representing Unicode characters as ASCII strings within the DNS, this
paper discusses the possibility of creating either transliterations or local language
equivalents of Top Level Domains (TLD) as ASCII Compatible Encoding (ACE) and
relying upon the DNAME construct for mapping such namespaces directly onto
existing generic and country-code TLD's.

The purpose of this paper is to examine this approach technically and to outline benefits
and challenges to such an approach. Because we assume the technical background of
readers of this work will vary, the following sections describe the DNS and work
towards internationalization in basic terms. Subsequent sections include technical
details regarding the specific proposal as well as illustrations of potential policy issues.
While the content in some cases is fairly technical, the level of detail is a necessary
context for understanding the application proposed.

II. Domain Name System (DNS) Overview

The Domain Name System is a distributed database system that functions as the
Internet’s naming service, mapping human-readable domain names into IP addresses,
mail routing information, and more. DNS allows people to use names (e.g.,
“company.com”) to identify Web servers, rather than IP addresses. DNS performs the

November 15, 2005

4

translation between the name and the IP address or addresses. When an Internet user
types “company.com” into a Web browser, DNS translates that domain name into an IP
address. The browser then connects to the Web server at that address. The diagram
below demonstrates this simple process.

1

DNS
Where is

“company.com” ?

Web
Browser

company.com
Web server

2
It’s at
204.14.78.100

(204.14.78.100)

3

4
Web page

Could you send me
your web page?

Domain names are actually paths in an inverted tree of nodes, called the name space.
The name space has a structure like that shown in the figure below.

www

acmebw

www

verisign

com

citadel kaos

verisign

net

cert ietf

org

"."

November 15, 2005

5

Each node has a textual label, from zero to 63 bytes in length. The domain name of a
node is simply the concatenation of labels on the path from that node to the root of the
inverted tree, with dots separating the labels.

These domain names serve as indices into the distributed database. Within the
database, data is stored as a triple of domain name, class, and type, where class
indicates the protocols used on the network described by this datum and type indicates
the function of the datum.

The distributed database itself is partitioned into zones, which are groups of contiguous
nodes in the name space. Each zone contains all of the data indexed by the domain
names of nodes in the zone. One or more name servers store each zone. A name server
with complete information about a zone is said to be authoritative for that zone.

To retrieve arbitrary data in the distributed database, name servers use a system called
name resolution. In the absence of more specific knowledge about a domain name, a
name server begins its search at the root of the name space (i.e., by querying name
servers authoritative for the root zone, also called a root name server). The name
server presents the root name server with the domain name of the node for which data
is sought. The root name server, if it does not know the final answer, refers the name
server to the name servers authoritative for the closest subordinate zone it knows about.
For example, a root name server might refer a querier interested in www.verisign.com
to the name servers authoritative for com, a known ancestor of the node the querier
seeks. This process continues until the name server performing name resolution finds
the data it seeks.

Some nodes in the name space are actually aliases for other nodes. If a name server
encounters such an alias during name resolution, it must restart the name resolution
process, replacing the domain name of the node it sought with the domain name the
alias refers to. For example, a name server looking up the address of
www.verisign.com might find (from the name servers authoritative for the zone that
contains www.verisign.com) that www.verisign.com is an alias for verisign.com. It
would then restart name resolution, looking for the address of verisign.com.

Since aliases cause this redirection from one node to another, nodes that are aliases
cannot index any other data. Allowing a node to act as an alias while simultaneously
indexing, say, an address would lead to ambiguity: If a name server looked up the
address of the alias, would it find the address attached to the alias node or an address
attached to the target of the alias?

Aliases are also restricted to nodes of the name space without child nodes. If an alias
node were allowed to have children, this would also give rise to an ambiguity: While
resolving the domain name of one of the child notes, a name server might encounter the

November 15, 2005

6

http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/
http://www.verisign.com/

alias. Should it restart the query at the target of the alias and descend the name space
from there, or should it continue descending through the alias, ignoring it?

III. Internationalized Domain Names (IDN) overview

Background

The core DNS RFCs2 allow domain names to comprise an arbitrary sequence of bytes
or octets. However, these RFCs also recommend that domain name syntax be limited
in practice to avoid causing problems with legacy applications at the time DNS was
deployed. RFCs dealing with electronic mail also specify the syntax of domain names.
The recommended syntax is letters of the Latin alphabet, European digits (0-9) and the
hyphen, all as represented in the US-ASCII character set. Since then, many
applications have codified these suggestions into near requirements. Applications and
even DNS servers and resolvers expect domain names to follow this syntax. The result
today is that DNS domain names are effectively restricted to a very small set of
characters.

The Internationalized Domain Name (IDN) Working Group3 of the IETF was formed in
the first half of 2000 with the goal of developing standards to internationalize domain
names. The group’s charter was to specify a set of requirements and an IETF
standards-track protocol(s) to allow a broader range of characters to be used in domain
names. In March of 2003, the group completed its work with publishing of the IDNA
RFCs (3490, 3491, 3492 and 3454), Domain names such as 記念.com are as valid as
verisign.com.

Character Encoding Terminology

It’s important to understand the terminology relating to representing characters in
information processing. An abstract character repertoire is a set of characters, called
code points, from one or more alphabets or scripts. (A script is the set of letters used to
write a particular language.) For example, an abstract character repertoire could
include the uppercase and lowercase letters of the Latin alphabet, European digits and
various punctuation. A coded character set assigns a number (a non-negative integer)
to each character in an abstract character repertoire. In other words, it gives an index

2 Principally RFC 1034 and RFC 1035.
3 See http://www.ietf.org/html.charters/idn-charter.html and http://www.i-d-n.net.

November 15, 2005

7

value to each character in the repertoire. A character encoding form maps the set of
integers used in a coded character set to code units. A code unit is an integer occupying
a specified binary width in a computer architecture, such as an 8-bit byte. The encoding
form enables characters to be represented as actual data in a computer. Finally, a
character encoding scheme is a mapping of code units into serialized byte sequences.
Character encoding schemes are relevant to the issue of cross-platform persistent data
involving code units wider than a byte, where byte-swapping may be required to put
data into the byte polarity canonical for a particular platform.

The mapping from a set of characters to a serialized sequence of bytes that can be used
to store or transmit data is called a character map. A character map includes an
abstract character repertoire, a coded character set, a character encoding format and a
character encoding scheme. Many people use the general and overloaded term
character set instead of the more precise term character map.

The Unicode Standard

There is an alphabet soup of character sets in use throughout the world. Each of the
world’s major scripts, from the Latin alphabet used by Western languages to the
complex scripts used to write Asian languages, have many different character sets.
This profusion of different codes to exchange information has led to the development of
a universal character set called Unicode.4 The current version of the Unicode standard,
version 4.1, contains 97,655 distinct coded characters. These characters cover the
principal written languages and symbol systems of the world. Since Unicode code
points are numbered in a 20-bit space, theoretically just over one million code points
can be represented.

There is universal agreement in the IDN Working Group that standards for
internationalized domain names should be based on Unicode. In other words, IDNs
will be composed of a sequence of Unicode characters or code points. The ongoing
discussion has focused on how to represent these IDNs for use in the DNS protocol.

Encoding Unicode Characters

4 Unicode is related to an international standard called ISO/IEC 10646. Both Unicode and ISO/IEC
10646 are based on the same abstract character repertoire and coded character set and the two standards
track each other. While a detailed description of differences is beyond the scope of this paper, the
important point is that both standards contain the same characters and will in the future.

November 15, 2005

8

A sequence of Unicode code points can be represented in multiple ways by using
different character encoding schemes (CES). Two popular CESs are UTF-8 and UTF-
16.5

UTF-8 is a variable-length encoding, which means that different code points require
different numbers of bytes. The larger a code point’s index number, the more bytes
required to represent it using UTF-8. For example, the first 127 Unicode code points,
which correspond exactly to the values used by the US-ASCII character set (which
maps only 127 characters), can be represented using only one byte in UTF-8. In fact,
their representation in UTF-8 is the same as in US-ASCII. UTF-8 can require up to
four bytes to encode certain code points, however. A reasonable criticism of UTF-8 is
that it penalizes certain scripts by requiring more bytes to represent those scripts’ code
points. The IETF has made the UTF-8 its preferred default character encoding for
internationalization of Internet application protocols.6

UTF-16, on the other hand, is a fixed-width encoding: all Unicode code points can be
represented with a two-byte value. (The full 20-bit range can be indexed with only 16-
bits because a reserved range in the first 16-bits, called the surrogates area, is used to
encodes values beyond 216.)

Both UTF-8 and UTF-16 require an “8-bit clean” storage and transmission medium.
Unlike US-ASCII, which only uses seven bits per byte to encode characters, UTF-8 and
UTF-16 need all eight bits per byte. (Such 8-bit data is informally called binary data,
to contrast it US-ASCII data.) Since historically domain names have been able to be
represented with 7-bit US-ASCII characters, not all applications that process domain
names preserve the status of the eighth bit in each byte; in other words, they are not 8-
bit clean. This issue led to significant debate in the IDN Working Group and
influenced the direction of the standards development.

Progression of the IDN Working Group

The members of the IDN Working Group considered the 8-bit clean issue from the very
beginning. Since it would seem that internationalizing domain names would invariably
involve storing and transmitting binary data (i.e., Unicode strings encoded in UTF-8,
UTF-16 or another encoding), and since applications that process domain names do not
expect such data, it would seem that the internationalization process faced an early
impasse.

5 UTF stands for Unicode Transformation Format.
6 See RFC 2277.

November 15, 2005

9

ASCII Compatible Encoding

Very early the working group considered the approach of using an ASCII compatible
encoding, or ACE, to encode the Unicode strings that would make up IDNs. This
technique represented binary data using only US-ASCII characters. The concept is
very similar to the Base64 encoding used by the MIME email standards.7 But whereas
Base64 uses 64 characters from US-ASCII, including uppercase and lowercase, the
ACE approach requires a smaller subset of US-ASCII, since DNS does not preserve the
case of letters.

Various ACE algorithms had been proposed and published as Internet-Drafts. All the
algorithms attempted to compress the input string before representing the output in
some US-ASCII subset. Different algorithms had different compression goals (and
yields) and encoded data using slightly different subsets of US-ASCII.

One feature of all the ACE algorithms proposed is that they applied to individual labels
in a domain name. Thus it’s possible that one label of a domain name could be
internationalized and another not. Consider the example IDN given early in this paper,
記念.com. The first label is internationalized and would need to be encoded with an
ACE, but the second label is the familiar com and can remain unchanged.

Another feature common to all the ACE proposals was some kind of tag to indicate that
a particular label is, in fact, ACE encoded. Most proposals specified a prefix, though at
least one specified a suffix.

One of the early ACE algorithms proposed was RACE (Row-based ASCII Compatible
Encoding), and was widely implemented as a result of its use in VeriSign’s
Internationalized Domain Names Testbed. To give an example, the RACE encoding of
the domain name 記念.com in the early testbed was bq--3cfbqx7v.com. The two

Chinese characters (記念) encode to 3cfbqx7v, and bq-- is the prefix indicating that
particular label is encoded in RACE.

Since then RFC 3492 has been published defining the ACE algorithm known as
punycode. Punycode was chosen for its compressibility as well as its ease of
implementation. Thus the testbed domain name of記念.com(bq--3cfbqx7v.com) was
migrated to the punycode of xn--h7tw15g.com.

IDN in Applications (IDNA)

7 See RFC 1521.

November 15, 2005

10

While an ACE allows an IDN to be represented in a form that can be handled by the
currently deployed DNS infrastructure on the Internet, an ACE algorithm alone is not a
full solution: a standard for IDNs would need to explain further details, such as where
the ACE encoding and decoding should be performed.

Several comprehensive IDN solutions using an ACE as a component were proposed in
the working group, but the final RFC was published as 3490 Internationalizing Domain
Names in Applications (IDNA).8 As the name suggests, this draft proposes that the
ACE encoding and decoding be performed solely in applications that use IDNs, such as
browsers, mail user agents and other network clients (Telnet, FTP, etc.). The RFC calls
for the creation of a presentation layer in IDN-aware applications that would be
responsible for the ACE encoding and decoding. This new layer in the applications’
architecture would be responsible for encoding any internationalized input in domain
names into ACE format before the corresponding domain name is sent over the network
(i.e., before resolution is attempted). Likewise, this new layer is responsible for
decoding the ACE format in IDNs and rendering the appropriate internationalized
characters for the user.

The beauty of this solution is that all deployed DNS infrastructure, from resolvers to
name servers, would work without modification. Critics argued that the solution is a
“hack” and aesthetically offensive. Admittedly, any ACE-based solution is designed to
work in the short term: because the installed base of DNS software cannot reliably
accommodate binary data, a solution using ACE would appear to be the only solution
that can be deployed quickly. Any IDN solution requiring transmission of binary data
would require upgrading existing resolvers and name servers. The IDNA draft makes
the assumption that it’s easier to upgrade user applications than the underlying DNS
infrastructure.

Name Preparation

The US-ASCII character set is simple enough that the syntax for domain names has
been very simple: only alphanumeric characters and the hyphen character are allowed,
and any comparisons need to be case-insensitive. Unicode is considerably more
complicated, with multiple ways to represent the same string. Consider, for example,
Latin letters with diacritical marks, such as Ä. This letter can be represented with a
Unicode code point called LATIN CAPITAL LETTER A WITH DIAERESIS. However,
another valid representation of this character is the code point LATIN CAPITAL LETTER
A followed by the separate code point COMBINING DIAERESIS. Through a process
called normalization, these two code points can be combined into the single code point
representing the composed character. In fact, depending on the type or form,

8 This draft was formerly entitled Internationalizing Host Names in Applications and the IDNA
abbreviation has remained.

November 15, 2005

11

normalization can also reverse the process and decompose combined characters.
Without normalization, Unicode strings cannot be reliably compared for equality.

A further issue is characters that would cause confusion in IDNs and should be
prohibited. For example, Unicode defines several different kinds of space characters.
The consensus of the Working Group is that characters such as these are too confusing
in domain names—users could not be expected to understand and input them—and
should be prohibited.

Another of the IDNA RFCs is RFC 3491 Nameprep: A Stringprep Profile for
Internationalized Domain Names (IDN) (often referred to as simply “nameprep”). This
draft specifies operations that must be performed on IDNs before they can be used—
compared with other IDNs, send to a name server for resolution, etc. The RFC
references four operations all of which are defined in RFC 3454 Preparation of
Internationalized Strings ("stringprep"):

1. Mapping: Each character in an IDN is compared against a mapping table, which
allows certain characters to be replaced with other characters. For example, the most
basic kind of mapping performed in this step is case folding, or converting all
characters to lower case.

2. Normalize: The IDN is normalized according to form KC, a process defined by the
Unicode Consortium.9 This process composes characters as described above and
performs additional transformations on the domain name.

3. Check for prohibited characters: If the resulting IDN contains any prohibited
characters, such as the spaces mentioned above, the domain name is illegal and must be
rejected.

4. Check for bi-directional characters: If the string contains characters from scripts
that are both right to left and left to right, the domain may be illegal if it does not follow
the rules in RFC 3454 and may have to be rejected.

IV. DNAME proposal

As outlined above, the DNS can accommodate domain names internationalized at the at
the top level label by assigning DNAME resource records for each language equivalent
of the TLD. This paper proposes that TLD registry operators establish local language
representations and their ACE form for each language community in which they

9 See UTF-15, http://www.unicode.org/unicode/reports/tr15

November 15, 2005

12

provide registration services and to coordinate with ICANN to place the necessary
DNAME records in the root zone.

In order to better illustrate this proposal, a series of appendices are included. Appendix
1 contains examples of ACE mappings for local language representations of company
and network in a sample of languages. Appendix 2 depicts the precise information that
would appear in the root zone. Appendix 3 provides a hierarchical view of the zone
structure. Appendix 4 provides a decomposition of the resulting query for ML.ML-
TLD domains and their mapping back onto the ASCII namespace.

Leveraging the utility of a DNAME-based approach to internationalizing the top-level
portion of a domain name provides a number of benefits.

First, it ensures a direct relationship between existing ASCII TLDs and local language
representations within the existing ICANN framework. In this fashion, the namespace
is not expanded in the traditional sense though resolution is provided with an anchor
back to the original ASCII TLD. As such, the existing ICANN agreements with TLD
operators could continue to be the vehicle used to manage registry operations.

Secondly, the potential for end-user confusion is lessened. By coordinating the
representations of TLDs in a language a registry offers services and mapping it back to
the ASCII form, consumers worldwide are provided a local language construct mapped
onto the ASCII DNS structure, a format well understood.

Thirdly, this approach defines a logical methodology for leveraging existing resources
without the need to hastily create new internationalized TLDs. As evidenced by the
extensive and time-consuming process for the latest round of new TLD registries, under
this approach, ICANN need only coordinate with existing registries to define the
appropriate mappings by language.

And finally, because the DNAME mapping “unifies” the local language versions of a
TLD into a single namespace, end-users need not take any action. By registering a
domain name of the form ML.TLD, the consumer has automatic access to the form
ML.ML-TLD where ML-TLD represents each language DNAME record created. Of
note, this lessens the opportunity for UDRP disputes because no matter how many
DNAME mappings are created for a TLD, there remains a single registrant of the
second-level name.

The remainder of this paper discusses technical and policy issues which may impact the
implementation of the technique described herein.

November 15, 2005

13

V. Technical issues, dependencies, assumptions

Location of DNAME record

A DNAME record to allow equivalence mapping of a new TLD to an existing TLD
would have the following form:

equivalent-tld. in dname tld.

This record would be added to the DNS root zone. All root name servers would have to
run DNS server software capable of supporting DNAME. As of this writing, not all
root servers comply. However, these upgrades can be expected within the next year,
considering the natural progression of software upgrades combined with other
upcoming DNS features (namely, DNSSEC).

Query load

Perhaps the most significant aspect of the proposed use of DNAME for TLD
equivalence mapping is an increase in query load to the root name servers. To explain,
one must understand however DNAME-capable name servers treat non-DNAME
capable resolvers. Please see Appendix 4 for a pictorial description of a DNS query
involving DNAME.

Consider a user wishing to visit the web sit for www.domain.equivalent-tld. The user’s
web browser asks the local resolver, or DNS client, to find IP addresses for
www.domain.equivalent-tld. The resolver composes a DNS query for this information
and sends it to the configured recursive name server (which is a combination of a name
server and an iterative resolver). The recursive name server follows the standard DNS
resolution process: In the absence of any cached information from previous queries,
the recursive name server first sends the query for www.domain.equivalent-tld to a root
name server. The root name servers hold a DNAME record aliasing equivalent-tld to
tld, and the response returned depends on whether or not the querying recursive name
server is DNAME capable.

A DNS protocol extension called EDNS10 allows DNS protocol speakers—such as
resolvers and name servers—to advertise their capabilities to each other. The DNAME
specification states that DNS implementations supporting an EDNS version number

10 Please see RFC 2671, Extension Mechanisms for DNS (EDNS0)

November 15, 2005

14

greater than zero are presumed to understand the DNAME specification in its entirety
and be DNAME capable.

If the query from the recursive name server contains EDNS extensions with a serial
number greater than zero, the root name server knows that the recursive name server
understands DNAME records. In that case, the root name server returns just the
DNAME record. The recursive name server acts on this record: it now knows that
because equivalent-tld is really an alias for tld, it should “restart” the query process and
now search for IP address information for www.domain.tld. In addition, the recursive
name server caches this DNAME record and all future queries for domain names
ending in equivalent-tld are immediately understood to be queries for tld: no additional
DNS queries are generated to the root authoritative servers.

Unfortunately, there are few iterative resolvers that are fully DNAME capable. The
iterative resolver in the BIND 9 name server does cache DNAME records and act on
them appropriately. (Though, strictly speaking, there can be no fully DNAME-capable
DNS implementations at the present time, since EDNS with a serial number greater
than zero has not been defined.)

If the recursive name server is not DNAME capable, the resolution process is slightly
different. The root name server assumes that the querying server does not understand
DNAME. Rather than return an incomprehensible DNAME record, the root name
server synthesizes a CNAME record “on the fly”. This CNAME record is specific to
the particular query and therefore only applicable in this instance. For example, the
CNAME synthesized for the query under discussion would be this:

www.domain.equivalent-tld. in cname www.domain.tld.

The recursive name server receives the CNAME and performs the same kind of “query
restart” described above: it now knows that is must send a new query to resolve
www.domain.tld. The CNAME record is cached, but note that it applies to only one
domain name: it is an alias that maps only one domain name, www.domain.equivalent-
tld, to another, www.domain.tld, and that’s it.

Consider a subsequent query by another resolver for IP address information for
www.domain2.equivalent-tld. A DNAME-capable recursive name server has cached
the DNAME and can immediately rewrite the queried domain name to
www.domain2.tld. But a recursive name server that doesn’t understand DNAME has
no choice but the query a root name server again, which will synthesize another
“customized” CNAME record, this time looking like this:

www.domain2.equivalent-tld. in cname www.domain2.tld.

November 15, 2005

15

Thus the issue is that non-DNAME-capable recursive name servers will send a query to
the root name servers every time they are asked to resolve a domain name ending in
equivalent-tld. We can expect in increase in query volume to the root name servers.

Fortunately, the query capacity of the root name servers is greatly increased in recent
years as a result of widespread deployment of anycast. This technique allows multiple
identical copies of an Internet resource—in this case, a root name server—to be
distributed throughout the Internet to increase capacity and reliability. About half of
the root operators are using anycast to increase the number of root servers. As of this
writing, there are over 100 root server instances worldwide, offering tremendous excess
capacity in the root server system. Obviously any proposal with potential to increase
traffic to the root name servers requires careful consideration.

Memory usage

A recursive name server stores its cache of DNS resource records learned from
previous resolutions in memory (as opposed to, say, a file on disk). A non-DNAME-
capable recursive name server that is asked to resolve many different domain names
ending in equivalent-tld will send many queries to the root name servers. These queries
will each result in a CNAME record being returned, which the recursive name server
would normally cache. Caching these records would consume memory on the recursive
name server. However, a cached CNAME is unlikely, since current name server
implementations that support DNAME return synthesized CNAME records with a TTL
of zero seconds and therefore these records will not be cached.

It is a general principle in DNS that there is a trade off between network utilization and
memory utilization. DNS administrators can adjust the “time to live” (TTL) values of
records in the zones under their control. For a popular domain name (one that is
queried frequently), if authoritative name servers return resource records for the domain
name with a high TTL, network traffic will be reduced, since recursive name servers
will store the records in their caches for a longer period of time. On the other hand, a
short TTL means less time in name servers’ caches and therefore fewer “cache hits”
and more queries for the domain name.

If the traffic to the root name servers increased to undesirable levels, it would be
possible to increase the TTL value on the synthesized CNAME records in an effort to
reduce the traffic by caching these CNAME records for a short time on recursive name
servers throughout the Internet. (Note that this change would require modifying the
DNS server software in the case of BIND 9.) The TTL would have to be chosen as a
balance between network utilization and memory consumption. A reasonable attempt
could be made in advance to choose an appropriate value, but only real-world
experience would allow this value to be tuned.

November 15, 2005

16

VI. Policy Issues and Assumptions

Two critical questions with regard to DNAME equivalence mapping for TLD strings
are:
1. What policies should be established regarding DNAMEs?
2. Who should be responsible for controlling and managing DNAMEs for a given
TLD?

Before delving directly into these two questions, it is important to understand the
following:

1. The discussion of policy issues in this section assumes that any DNAME plan
will comply with any Internet standards developed in the technical community
for DNAMEs. Technical issues with regard to DNAMEs are discussed
elsewhere in this paper so they will not be included here, but it should be
understood that in any DNAME solution, policy and technical requirements
should be synchronized.

2. DNAME equivalence mappings for TLD strings require entries into the root
zone file and all changes to the root zone file require approval by the U.S.
Department of Commerce (DoC). Such approval is obtained via requests sent to
the IANA.

What policies should be established regarding DNAMEs?

This issue is clearly a domain name topic and as such falls into the realm of the ICANN
Generic Name Supporting Organization (GNSO) for gTLDs and the Country Code
Name Supporting Organization (ccNSO) for ccTLDs. The ICANN Bylaws contain a
policy development process (PDP) for the GNSO and a similar process is currently
being finalized for the ccNSO. The approach recommended here is to proactively deal
with policy concerns from the beginning and thereby facilitate any policy development
work that might need to occur in the future.

Establishing key policies before the introduction of DNAMEs would make the
acceptance of their use significantly easier. To do this in a reasonable amount of time
would necessitate gaining the support of major stakeholders early in the process. A
recommended approach for achieving this objective would be to do the following:

• Identify key policy areas
• Identify who the major stakeholders are
• Define the key concerns of the major stakeholders with regard to all key policy

areas
• Develop draft policies that will accommodate the key concerns of the major

stakeholders

November 15, 2005

17

• Discuss the draft policies with the major stakeholders to obtain their input
• Modify the draft policies to address input from stakeholders.

There are couple different scenarios in which the above steps could happen. Once there
is enough interest to pursue the DNAME solution, the GNSO and ccNSO could be
contacted to find out whether they would be willing to initiate the policy work and if so
how long it would be before they could start. If they could start work relatively
quickly, the steps above could be performed as part of the PDP processes in each of the
supporting organizations or as part of a joint PDP involving both organizations. If they
were not able to commence work in a timely manner, interested parties could perform
some of the steps above to lay some groundwork for the PDPs once they commence,
hopefully then shortening the PDP process(es). There is also the possibility that one of
the supporting organizations may not be interested in working on a DNAME solution;
in such case, a solution could possibly be considered for just one category of TLDs,
gTLDs or ccTLDs alone.

Key policy areas at a minimum should include:

• The selection and approval process for DNAME entries
• The role of registries and registrars (gTLD and ccTLD)
• The protection of intellectual property
• Dispute resolution
• The role of governments.

 Each of these areas is discussed briefly below.

The selection and approval process for DNAME entries

Before a DNAME can be used for a given TLD, language/script equivalents must be
assigned for TLD for each language/script community in which the registry wishes to
provide registration services using DNAMEs. A couple policy questions that need to
be answered in this regard are: 1) Should each registry be allowed to select its own
language/script equivalents? 2) Should local communities using a common
language/script have input into what language/script equivalents are used by registries
and, if so, what community would be authoritative for a language/script that is used in
different regions of the world? Whether or not uniform policies need to be set
regarding these questions can be debated. But it would certainly seem to be sound
business practice for registries to consult with local communities before selecting
language/script equivalents; this would likely be a good area for market research by
registries.

The approval process for DNAME entries could be as simple as submitting a request to
IANA for entry of the delegations into the root zone. If global policies are established
for DNAMEs, there might need to be a policy compliance check before submitting
delegation requests to IANA.

November 15, 2005

18

The role of registries and registrars (gTLD and ccTLD)

Both gTLD and ccTLD registries would perform an essential role in implementation of
DNAME TLD equivalents. They would be the primary proponents of specific
DNAME TLD proposals and would therefore have the responsibility of doing any
necessary market research, consulting with local communities, complying with any
global policies that may be established, implementing the solution in their systems,
coordinating with and educating registrars (and in some cases end users themselves if a
registrar model is not used), and submitting root zone change requests to IANA.

It seems that the role of registrars and registrar resellers would not change very much
from what it is today. The use of DNAME equivalents for TLDs could quite possibly
expand the demand IDNs so registrars and resellers may find it useful to develop new
marketing programs for IDNs. There should be very minimal demand for changes in
registrar registration systems unless they are not already offering IDNs, in which case
they would need to add IDNs to their product offerings.

Because of their critical relationship with domain name registrants, it will be very
useful for registrars to be an active part of any DNAME policy development efforts.
They also will likely be excellent sources of market demand information that registries
can use in making decisions about possible deployment of DNAME TLD equivalents.

The protection of intellectual property

It is possible that DNAME TLD equivalents would have little if any impact on
intellectual property protection. Because DNAME equivalents would only be used for
TLDs, intellectual property issues for second level names would not change. At the
same time, it would be important to involve the intellectual property and business
communities early on in the consideration of DNAME TLD equivalents to give them
the opportunity to evaluate possible impacts on intellectual property.

Dispute resolution

DNAME equivalents should not require any new procedures for dealing with domain
name cyber squatting. The ICANN UDRP would apply equally whether or not
DNAMEs are used to represent TLDs.

There is the possibility though that a new type of dispute might arise: use of a TLD
DNAME by someone other than the registry delegated to provide registration services
for the corresponding ASCII TLD. The issue here involves a very critical policy issue
regarding the rights of registry operators for TLDs for which they have been granted
registration service rights. This issue is discussed in more detail below in response to

November 15, 2005

19

the question, who should be responsible for controlling and managing DNAMEs for a
given TLD?

The role of governments

Governments will likely have strong interest in policies related to DNAMEs. First of
all, they are very interested in having fully internationalized domain names in local
languages/scripts used in their countries so the possibility of implementing a solution
for this that avoids some of the challenges of implementing IDN.IDNs in the DNS
could be very attractive. Secondly, some governments will probably have a lot of
interest in the choice of DNAME TLD equivalents used by registries. Consultation
with local communities as well as the ICANN Governmental Advisory Committee will
be very helpful in dealing with DNAME policy issues.

Who should be responsible for controlling and managing DNAMEs for a given
TLD?

This could be one of the most controversial and political issues with regard to
DNAMEs. Some countries may want to control any DNAMEs in their primary
language.
It can reasonably be expected that ccTLD registries will want control of DNAMEs
associated with their country codes and GTLD registries will want control of DNAMEs
associated with their TLDs.

Whereas it does seem reasonable that local communities having common
languages/scripts should be given the opportunity to provide input into selection of
DNAME equivalents for those languages, giving control of DNAME management to
countries could create some difficult problems. For a given language/script, what
country should have control? When multiple countries use the same language/script,
which country should have control? For ccTLDs, country control of DNAMES might
work in many cases. For gTLDs that are used globally, DNAME control by one
country could result in a poor user experience for those using the same language/script
in other countries.

What could be the simplest approach would be to allow registries of existing TLDs to
control the DNAMEs associated with their ASCII TLD names. In this approach, each
gTLD and ccTLD registry could decide for itself whether it wanted to implement a
DNAME solution and, if it did, it would be responsible for that implementation
assuming that any approved policies were followed. If a registry elected not to
implement a DNAME solution for a particular language/script, that registry could
possibly give permission to another registry to offer a DNAME solution.

Some of the advantages of this approach are:

November 15, 2005

20

1. Existing registries would already have the infrastructure in place to perform the
services necessary for implementing a DNAME solution and would merely
have to modify their systems to support DNAMEs. It would not be necessary to
create new TLDs and to establish registries for those TLDs in order to allow
registrants to use TLD names in their own languages.

2. Disputes involving DNAMEs would be handled in the same manner and by the
same organizations as those involving ASCII TLDs. It would also make it
easier to deal with disputes involving similar and/or identical names registered
as both ASCII and internationalized names using the DNAME functionality.

3. It would be relatively easy for registries to provide centralized information with
regard to DNAMEs that correlate to ASCII TLDs.

4. All existing registries would have the opportunity to play in the DNAME game.
5. Governments could readily influence the DNAME implementation within their

own ccTLD registry if desired.
6. A DNAME equivalence mapping solution could quite probably be brought to

market in relatively quick order from a technical point of view.

There are at least three possible negative consequences if organizations other than a
delegated registry operator are allowed to offer DNAMEs for that registry operator's
TLD: 1) user confusion; 2) dispute resolution complication; and 3) TLD brand
dilution. To understand these three issues, consider this example:

Domain name: IDN.tld where IDN represents a domain name in local script and
.tld is in ASCII.

If the registry operator for .tld also provides a DNAME equivalent for .tld, then:

• Users of the domain name would have the same experience whether they
use the ASCII or DNAME version.

• If there is a dispute, then the same registry would be involved whether it
involved the ASCII or DNAME versions or both.

• The registry for .tld has full control of its brand.

If a different registry operator provides a DNAME equivalent for .tld that is either
different from the one provided by the .tld registry operator or provides a DNAME
equivalent for .tld in a case where the .tld registry operator does not offer a
DNAME equivalent:

• Users of the domain name could have very different experiences depending
on whether they used the ASCII version or one of the DNAME versions.

• If there is a dispute, then it is likely that at least two registries would be
involved, thereby seriously complicating the dispute resolution process as
well as implementations of any decisions made in that process.

November 15, 2005

21

• The .tld brand has been diluted. Registries invest considerable amounts of
money and resources in developing the brand for their TLDs so it is
important that that investment not be compromised.

VII. Proposal and conclusion

As described above, there exists within the DNS the capability to provide a truly
internationalized service to the global internet community and to do so within existing
regulatory frameworks and based upon IETF technical standards. The ICANN should
study this approach and coordinate with existing TLD registries to establish a test-bed
for modeling performance issues and to determine the production feasibility of this
design. Specifically, the ICANN should:

1. Encourage technical feasibility and data-gathering to model system
performance and impact to DNS utilizing existing TLD registry operators.

2. Establish a coordination process amongst TLDs to develop ACE

assignments by language market for each TLD.

3. Establish a timeframe within which to complete any technical reviews or
policy assessments.

November 15, 2005

22

Appendix 1 - ACE examples

gTLD Transliteration Script/Language Example gTLD
Equivalent punycode

Simplified Chinese 公司 xn--55qx5d
Traditional Chinese 公司 xn--55qx5d
Japanese 会社 xn--6oq404h
Korean 회사 xn--vf4b131b
Arabic ش xn--zgb
Swedish affärshus xn--affrshus-2za
Simplified Chinese 网? xn--ur0a138b
Traditional Chinese 網絡 xn--od0alg
Japanese ネット xn--9ckkn
Korean 통신 xn--zv4b74y
Arabic ك xn--fhb
Swedish nät xn--nt-via

com

net

company

network

November 15, 2005

23

Appendix 2 – Sample DNAME entry in the root zone for “회사” (Sample Equivalent of
COM in Hangul)

xn--vf4b131b. DNAME com.

November 15, 2005

24

Appendix 3 - DNS tree with DNAME equivalents

November 15, 2005

25

Appendix 4 - DNAME Query diagram

November 15, 2005

26

	Abstract
	Table of Contents
	II. Domain Name System (DNS) Overview
	III. Internationalized Domain Names (IDN) overview

	Background
	Character Encoding Terminology
	The Unicode Standard
	Encoding Unicode Characters

	Progression of the IDN Working Group
	ASCII Compatible Encoding
	IDN in Applications (IDNA)
	Name Preparation
	DNAME proposal
	V. Technical issues, dependencies, assumptions

	Location of DNAME record
	Query load
	Memory usage
	Policy Issues and Assumptions
	VII. Proposal and conclusion

