The Relationship of DDoS and Top Level Domain Name Registries

Edward Lewis
Neustar, Inc.
Presentation to the ccNSO Tech Day at ICANN 43
March 12, 2012
Threats to Registries

» Much has been made of DNSSEC and its contribution to securing the domain name system
» But the role of DNSSEC is limited
» And registries have a lot of other concerns
» One is a class of attacks known as Distributed Denial of Service (DDoS)
» This presentation will cover DDoS attacks and the implications for registries
Agenda

» What is a "DDoS" in a few words?

» How a DDoS attack might hit a registry?

» How a registry may become an unwitting participant?

» How a registry can play a role in issuing warnings?
What is "DDoS"?

» Let's break this down a bit
 » DoS is denial of service
 » DDoS is a Distributed DoS

» Denial of service might mean "crashing the server/application" or "block access to the server"

» Distributed DoS means doing a DoS from sources spread out over the Internet, making it harder to observe and stop

» The first "D" in DDoS makes addressing a DDoS much harder than a simple DoS
Why can a DDoS exist?

» The Internet has two fundamental characteristics that allow DDoS attacks to exist
 » The use of client-server, where the server does more work than the client
 » E.g., the web, good old HTTP
 » The use of lightweight "send and forget" protocols
 » E.g., the User Datagram Protocol necessary for DNS to exist
» If the "fertile ground" for DDoS were engineered away, we'd kill the Internet
Why does DDoS exist?

» Some interests are motivated to stop other interests
» Sometimes the motivation is money
 » Extortion
 » Enabling a "break-in" to steal other asset information
» Sometimes the motivation is an ideology
 » Anti-government protests
 » Protesting any other organization's decision
» There is much focus on motivation, but the answer to DDoS really isn't there. Understanding the motivation will help address the attack, but there will always be a motivation
For registries...so what?

» Where are domain name registries, ccTLD and others exposed?
 » Public services like DNS, WhoIs (etc.), Registration
 » Business services like Web, eMail

» And there's one more "exposed surface"
 » Being "tuned" to what is happening "on the street"

» How are registries involved with a DDoS?
 » The victim, the target of the attack
 » An unwitting accomplice of the attack
 » A forecaster of attacks
Narrowing this discussion

» The most exploited service of a domain name registry is the DNS
 » DDoS used to be primarily a web problem
 » Now increasingly a DNS problem
» Registries tend to be good at DNS and don't often show signs of being targets
 » Lots of capacity, anycast, monitoring

» But registries are "used" in DDoS, increasingly so
» And registry operators are more aware of DDoS activity than registrants
If you are a target

» Simple - throw away the attack queries faster than they arrive
 » Hard - know what is an attack query

» There are many techniques to do this
 » Having capacity above peak loads
 » Anycast helps localize DDoS (most bots are regional)
 » Scrubbing, filtering packets that fit certain profiles

» Registries will do some of this on their own or outsource to DNS service providers that do
Unwitting accomplices

» Reflection attacks work on the basis of
 » The malicious source sends a small query with a false return address
 » The DNS server responds with a larger response to the return address
 » The return address is the victim
» To the registry it seems that the victim is asking for this
» The paths into the registry are "D"istributed and therefore undetectable
Reflection Attack

"Bad guy" 10.4.12.3

"Bad guy" 10.13.2.31

"Bad guy" 10.43.9.215

All from "192.168.10.5"

Registry DNS 192.0.2.1

Attack payload arrives, much larger and focused

Victim 192.168.10.5
An example

» One observed attack used queries for isc.org's information in bulk
 » Such a query is not that unusual
» A query might take about less than 24 bytes
» The full response is 3961 bytes
» The attacker sees the registry send 165 times as much data to the victim as the attacker ever sends
» This is not uniquely a registry problem, but registries are great places to get size amplifications like this
The value of non-existence

» With DNSSEC, the size of a NXDOMAIN response is much larger than the query
 » A large amplification in bytes
» There are many non-existent names
 » In any registry, more don't exist than do
» With so many possible names to use
 » The protocol cannot distinguish between a true and a malicious query
» But in logging, you can see if a (falsified) source is "scanning" unallocated names
What can a Registry do?

» First, be on the watch for this activity
 » Look for certain characteristics that identify the malicious traffic
 » This is increasingly difficult as attacks get better

» Second, filter traffic that is suspicious
 » Once identified, the attack may persist for some time
 » It helps to "scrub" it away, a term for filtering

» Third, remove filters when the attack stops
 » These attacks do end, or shift their target
 » Really want to limit false positives
DDoS Forecasters

» Sometimes a registry will learn of future bad activity via their contacts

» When a registry tells the intended victim "watch out"
 » You might think the victim would be thankful
 » But, this has happened, the victim might be even more suspicious of the registry

» In this case, the registry might appear to be a blackmailer themselves!
This has happened...

» A hacker group made plans to attack an organization and this was intercepted by security groups

» The local ccTLD learned of this not-so-closely held secret and tried to warn the target

» The some operating members of the target responded to the information with "and who are you?"

» The attack went ahead as planned
What happened afterward

» The registry made greater efforts to "socialize" and gain the confidence of key elements in the local industry.

» This is more valuable than all the formalized, engineering-based security tools available.
Winding up

» Registries have a number of security headaches that are not solved by DNSSEC

» For DDoS, a registry is involved three ways
 » Victim, which can be treated through operational practices
 » Unwitting accomplice, which can be abated
 » Forecaster, "knowing" the state of the Internet

» The most important steps an registry can take, that are often overlooked
 » Monitor its operations (see if it is being scanned)
 » Develop out-of-band ties to appropriate entities (LE, gov, ...
Thanks for your time...

» Questions?

» My contact information: ed.lewis@neustar.biz