DNSSEC for the Root Zone

ICANN 37 Nairobi
March 2010

Kim Davies, ICANN
This design is the result of a cooperation between ICANN & VeriSign with support from the U.S. DoC NTIA
Design
Design Requirements

Keywords
Transparency

Processes and procedures should be as open as possible for the Internet community to trust the signed root
Audited

Processes and procedures should be audited against industry standards, e.g. ISO/IEC 27002:2005
High Security

Root system should meet all NIST SP 800-53 technical security controls required by a HIGH IMPACT system
Roles and Responsibilities
ICANN
IANA Functions Operator

- Manages the Key Signing Key (KSK)
- Accepts DS records from TLD operators
- Verifies and processes request
- Sends update requests to DoC for authorization and to VeriSign for implementation
DoC NTIA
U.S. Department of Commerce
National Telecommunications and Information Administration

- Authorizes changes to the root zone
 - DS records
 - Key Signing Keys
 - DNSSEC update requests follow the same process as other changes
- Checks that ICANN has followed their agreed upon verification/processing policies and procedures
VeriSign
Root Zone Maintainer

• Manages the Zone Signing Key (ZSK)
• Incorporates NTIA-authorized changes
• Signs the root zone with the ZSK
• Distributes the signed zone to the root server operators
ICANN

TLD Operator

DNS records sent from TLD operator to ICANN

TLD Operator

RZM

VerifiSign

Verified data sent to DoC

KSK published by ICANN

KSK Management

Authorized data sent to VeriSign

ICANN

ZSK sent from VeriSign to ICANN

VeriSign

Unsigned root

ZSK Management

Keyset is signed by KSK and sent back from ICANN to VeriSign

DoC

Authorized data sent to VeriSign

KSK Management

Unsigned root

Signer

ZSK

Signed root

Root Zone distributed to root servers

Root Servers
Approach to Protecting the KSK
Physical Security

Facility – Tier 1 – Access control by Data Center

Facility – Tier 2 – Access control by Data Center

Facility – Tier 3 – Access control by Data Center

Cage – Tier 4 – Access control by Data Center

Safe Room – Tier 5 – Access control by ICANN

Safe #1 – Tier 6
- HSM – Tier 7
- Private Keys
- Key Ceremony Computer

Safe #2 – Tier 6
- Safe Deposit Box – Tier 7
- Crypto Officers' Credentials
DPS
DNSSEC Practice Statement

• States the practices and provisions that are employed in root zone signing and zone distribution services
 ‣ Issuing, managing, changing and distributing DNS keys in accordance with the specific requirements of the U.S. DoC NTIA

• Comparable to a certification practice statement (CPS) from an X.509 certification authority (CA)
Community Trust

- Proposal that Community Trusted Representatives (TCR) have an active roll in management of the KSK
 - as Crypto Officers needed to activate the KSK
 - as Recovery Key Share Holders protecting shares of the symmetric key that encrypts the backup copy of the KSK
Auditing & Transparency

- Third-party auditors check that ICANN operates as described in the DPS
- Other external witness may also attend the key ceremonies
DNSSEC Protocol Parameters
Key Signing Key

- KSK is 2048-bit RSA
 - Rolled every 2-5 years
 - RFC 5011 for automatic key rollovers

- Propose using signatures based on SHA-256
Zone Signing Key

• ZSK is 1024-bit RSA
 ▸ Rolled once a quarter (four times per year)

• Zone signed with NSEC

• Propose using signatures based on SHA-256
Signature Validity

- DNSKEY-covering RRSIG (by KSK) validity 15 days
 - new signatures published every 10 days
- Other RRSIG (by ZSK) validity 7 days
 - zone generated and resigned twice per day
Key Ceremonies

• Key Generation
 ▸ Generation of new KSK
 ▸ Every 2-5 years

• Processing of ZSK Signing Request (KSR)
 ▸ Signing ZSK for the next upcoming quarter
 ▸ Every quarter
Root Trust Anchor

• Published on a web site by ICANN as
 ‣ XML-wrapped and plain DS record
 ‣ to facilitate automatic processing
 ‣ PKCS #10 certificate signing request (CSR)
 ‣ as self-signed public key
 ‣ Allows third-party CAs to sign the KSK
 ‣ ICANN will sign the CSR producing a CERT
Deployment
Goals

• Deploy a signed root zone
 ‣ Transparent processes
 ‣ Audited procedures
 ‣ DNSSEC deployment
 • validators, registries, registrars, name server operators

• Communicate early and often!
Anticipated Issues
A significant proportion of DNS clients send queries with EDNS0 and DO=1

Some (largely unquantified, but potentially significant) population of such clients are unable to receive large responses

Serving signed responses might break those clients
Rollback

- If we sign the root, there will be some early validator deployment
- There is the potential for some clients to break, perhaps badly enough that we need to un-sign the root (e.g., see previous slide)
- Un-signing the root will break the DNS for validators
Staged Deployment
Deploy Incrementally

- Serve a signed zone from just L-Root, initially
- Follow up with A-Root
- Then other root servers
 - M, I
 - D, K E,
 - B, H, C, G, F
- Last, J-Root
Deploy Incrementally

- The goal is to leave the client population with some root servers not offering large responses until the impact of those large responses is better understood
- Relies upon resolvers not always choosing a single server
DURZ

- “Deliberately Unvalidatable Root Zone”
- Sign RRSets with keys that are not published in the zone (but with matching keytag…)
- Publish keys in the zone which are not used, and which additionally contain advice for operators (see next slide)
- Swap in actual signing keys (which enables validation) at the end of the deployment process
DURZ

. 3600 IN DNSKEY 257 3 5 (AwEAAa++++++++++++++++++++++++++++++++++++++
++THIS/KEY/AN/INVALID/KEY/AND/SHOULD/NOT/BE/USED/CONTACT/ROOTSIGN/AT/ICANN/DOT/ORG/FOR/MORE/INFORMATION+++++
++++++++++++++++++++++++++++++++++++++
++++) ; Key ID = 6477
DURZ

• Deploy conservatively
 ‣ It is the root zone, after all

• Prevent a community of validators from forming
 ‣ This allows us to unsign the root zone during the deployment phase (if we have) to without collateral damage
Measurement

• For those root servers that are instrumented, full packet captures and subsequent analysis around signing events

• Ongoing dialogue with operator communities to assess real-world impact of changes
Testing

• A prerequisite for this proposal is a captive test of the deployment
 ▸ Test widely-deployed resolvers, with validation enabled and disabled, against the DURZ
 ▸ Test with clients behind broken networks that drop large responses
Interaction with TLDs
DS Change Requests

- Approach likely to be based on existing methods for TLD managers to request changes in root zone
- Anticipate being able to accept DS requests 1-2 months before the validatable signed root zone is in production
- Current topic of discussion within Root DNSSEC Design Team
Communication
Project Web Page

- http://www.root-dnssec.org
 - Status updates
 - Documents
 - Presentation Archive
 - Small collection of links to relevant tools
 - Contact information
 - RSS
Communication
with non-technical audiences

• Will reach the non-technical and semi-technical audiences with press releases and other means.

• PR departments with people who know how to do this will be engaged.
Communication

with technical audiences

• Reaching the technical audiences via mailing lists and other means
 ▸ IETF DNS lists (e.g. DNSOP)
 ▸ non-IETF DNS lists (e.g. DNS-OARC)
 ▸ General operator lists (e.g. NANOG)
 ▸ ...

Draft Timeline

• December 1, 2009
 ‣ Root zone signed
 • Initially signed zone stays internal to ICANN and VeriSign
 ‣ ICANN and VeriSign begin KSR processing
 • ZSK and KSK rolls

• January - July 2010
 ‣ Incremental roll out of signed root

• July 1, 2010
 ‣ KSK rolled and trust anchor published
 ‣ Signed root fully deployed
Deployment Status

24 February 2010
Documentation

- Requirements document posted
- High-Level Architecture, Policy and Practice Statements, Trust Anchor Publication, Deployment documents posted in draft form
- Ceremony, KSK Facility Requirements, Testing documents expected to be posted soon

http://www.root-dnssec.org
Testing

- Several rounds of data collection testing by Root Server Operators complete
- Several KSR/SKR exchanges complete
- DURZ vs. Resolver testing complete
DURZ Roll-Out

• L and A root servers are running the DURZ

• M and I will make the transition next week.
Thoughts?

- Feedback on this proposal would be extremely welcome
 - Email to rootsign@icann.org
Root DNSSEC Design Team

Joe Abley
Mehmet Akcin
David Blacka
David Conrad
Richard Lamb
Matt Larson
Fredrik Ljunggren
Dave Knight
Tomofumi Okubo
Jakob Schlyter
Duane Wessels