DANE – a killer app for DNSSEC?

CZ.NIC z.s.p.o. Ondřej Surý ondrej.sury@nic.cz 27. 6. 2012

Certificates in DNS

- Old and recurring idea...
- CERT RR (RFC4398 by Simon Josefsson)
 - Generic way to store certificates
 Hostname/Email CERT Type KeyTag Alg Cert_or_CRL
- draft-schlyter-appkey (by Jakob Schlyter Hostname APPKEY PubKeyAlg PubKey
- TLSFP RR request (by Ondřej Surý
 - many comments → withdrawn to the date
 - _Service._Proto.Name **TLSFP** Port Mandatory PubKeyAlg ² HashAlg FingerPrint

What we do in DANE WG?

- Put a {key|cert|hash|...} to DNS
- Sign it with DNSSEC
- Use that as a "trust path" for certificates

Why we do it?

- DNS lookup + TLS negotiations
 - Can take a long time (OCSP, CRL, ...)
- DV certs heap of unknown CA trusted
 - If you trust one, you trust them all
 - Government CAs...? (
 - Wildcard ('*') certificates
 - CA breaches (remember DigiNotar?)
- Solution: Use DNS to publish the "correct" key for the host
 - Can (even) save time (do DNS lookup in parallel)

Where we were?

- Idea sort of floating around for a long time
- DNS root got signed!
- Bar BOF @ IETF 78 in Mastricht (2010)
 - Mailing list created (keyassure)
 - Lots of discussion
 - 5 new Internet Drafts so far
- BOF @ IETF 79 in Beijing (KIDNS BoF)
 - Working Group created few weeks after that
- WG renamed to DANE (to not clash with kitten)

Where we are?

- Working Group Documents
 - draft-ietf-dane-use-cases
 - Describe use cases for DANE
 - RFC 6394
 - draft-ietf-dane-protocol
 - Two IETF Last Calls
 - The first one generated lot of comments
 - Got approved by IESG in June 2012
 - In RFC Editor queue! Hooray!

Use cases in a nutshell

- CA constraints
 - "I use only this CA for my certificates"
- Certificate constraints
 - I use only this CA-issued certificate"
- Domain-Issued Certificates
 - "I have generated this certificate and I use it"
- Delegated Services
 - "My hosting provider has to use this certificate"
- Web Services
 - "Machine-to-machine communication"

What does TLSA look like?

- Query: _portnum._prottype.hostname
 - 1 query → n responses (rollovers, load-balancing)
- Response:
 - cert_usage selector matching_type binary_data
- Example:

```
_443._tcp.example.com 3 1 1
8755CDAA8FE24EF16CC0F2C918063185E43
3FAAF1415664911D9E30A924138C4
```

What does TLSA look like?

Certificate usage:

- 0: CA constraint
- 1: Service certificate constraint
- 2: Trust anchor assertion
- 3: Domain-issued certificate

Selector

- 0: Full certificate
- 1: SubjectPublicKeyInfo

Hash-type:

- 0: Full certificate
- 1: SHA-256 hash
- 2: SHA-512 hash

Certificate usages

CA constraint	Service certificate constraint
 CA certificate MUST pass PKIX validation "use only this CA" 	 End-entity certificate MUST pass PKIX validation "use only this cert from CA"
Trust anchor assertion	Domain-issued certificate
 Self-issued CA certificate Insert new trust anchor "use my own CA" 	 Self-issue EE certificate Must match service cert "use my own certificate"

TLSA record

- Already assigned by IANA
 - RR type 52
- Support for TLSA record in:
 - Bind 9.6-ESV-R7, 9.7.6, 9.8.3 & 9.9.1
 - Knot DNS 1.0.4
 - PowerDNS 3.1
- Generators
 - swede (https://github.com/pieterlexis/swede)

What is needed now?

- Patch the apps to support DANE
 - DNSSEC validation (or use trusted last mile)
 - Implement DANE matching
 - Browsers, MUAs, MTAs, XMPP, ...
- Fix the broken last mile
 - Dumb resolvers, captive portals, etc.
 - DNSSEC-Trigger can help here?
 - http://www.nlnetlabs.nl/projects/dnssec-trigger/

What to do next (protocol wise)?

- DANE and other protocols
 - S/MIME (draft-hoffman-dane-smime)
 - SMTP (draft-fanf-dane-smtp)
 - XMPP (draft-miller-xmpp-dnssec-prooftype)

Questions?

