Looking at DNS traces:
What do we know about resolvers?

Ólafur Guðmundsson
Shinkuro
Ogud@shinkuro.com
Motivation: Open Questions

- What is the “market share” for resolver X
- What can we deduct from traces to a subset of authoritative servers?
- Can we predict the effect of adding/deleting a server in location Y?
- Do resolvers behave according to the RFC’s?
 - Or more generally how do they behave?
Case #1: CCTTL adds foreign DNS servers by a commercial operator

- The new operator is supposed to answer questions from outside the country.
 - The new operator charges per query answered.
 - The CCTLD operator did their homework and predicted what percentage of queries are “foreign”
- The bills were higher than predicted
 - Is the operator over charging?
 - Is the operator “stealing” traffic from inside the country?
 - Was the model wrong?
Case #2: DNS operator change

I was asked to document a procedure that allowed transfer of a DNSSEC signed domain to a new operator

- **Questions:**
 - In what sequence to perform operations
 - How long to wait for information to propagate before next step
 - How do resolvers treat repeated information, such as NS set in authority section
 - Do they modify the TTL of the stored NS set?
 - Which NS set do resolvers use?
 - Important during change and when Parent or Child differ
 - Resolver that uses the Child set
 - and “stretches” the TTL
 - And asks question to the domain often enough
 - may not discover an operator change
Case #3: What % of resolvers support DNAME?

- This question was raised in the context of D+C proposal
- Quick survey showed less deployment of DNAME support than expected by looking at well known implementations
 - supported DNAME,
 - BIND, Unbound, WindowsDNS, Nominum
 - did not
 - Power Recursor, DJBdns/OpenDNS, Google,
- How about all the other resolvers?
Case #4: DNSSEC validation in the wild

- I have been working with traces from .ORG to try to find out how much validation is going on.
 - Org. DNSKEY TTL is 15 minutes
 - Org. DSTTL is 1 day
 - 50 minute long traces
- I look for DNSKEY and DS queries from an resolver.
 - If a resolver asks for
 - DNSKEY twice (at least 15 minutes apart)
 - or for a DS for a signed domain
 - it is validating
ORG DNSSEC validation study issues

- I only have traces for the DNS server that Afilias operates for .org.
 - Afilias operates 2/3 of NS records
 - PCH operates 1/3 of NS records
 - PCH has more sites
 - Afilias sees about 50% of query traffic

- My first questions:
 - what is the probably that my traces see a DNSKEY or DS query?
 - What kind resolvers do I see and why?
 - Does the probably of seeing an interesting query depend on how busy the resolver is?
Transfer work:

- Are resolvers parent or child centric?
- Do sticky resolvers exist?
- What is the percentage of each?

Simple experiments:
- Set up a zone and with one server is only in one NS set
 - Works if all resolvers are queried with identical probability
- Set up zone with two sets of authoritative server(s)
 - One set referenced in parent the other one in children
Sticky Resolver detection Zone setup

Parent

Child-C
Red-C
Red

Child-P

Child-C
Blue
Blue-C

Child-P

Parent

Child-C
Red-C
Red

Child-P

Child-C
Blue
Blue-C
How good a sample of resolvers are open recursive resolvers?

- I got a list of 856 open recursive resolvers
- 136 did not answer queries (16%)
- I probed the other 720 servers every 3 seconds 20 times for the record and recorded answer and TTL.
 - NS records TTL 17
 - TXT record TTL 7
- I asked the servers a final question:
 - “version.bind. TXT CH”
What should answers look like

- I process answers based on where answer comes from
 - P == Parent referenced server
 - C == Child referenced server.

- Child Centric non sticky:
 - PPPCCCPPPPCCCPCCPCPPCCPP

- Child Centric sticky
 - PPPCCCCCCCCCCCCCCCCCCCC

- Parent Centric
 - PPPPPPPPPPPPPPPPPPPPPPPPPPP
What answers look like

- **130** different patterns
- Top 10 are 536 or **74.4%**
 - 172 PPPCCCP PPPCCCP PPPCCCP
 - 108 PPPCCCCCCCCCCCCCCCCC
 - 49 PPPCCCC PPPCCCC
 - 42 PPPCCCCC PPPCCCCC
 - 38 PPPCCCCC PPPCCCC
 - 34 PPPCCCCC PPPCCCC
 - 33 PPPCCCCC PPPCCCC
 - 26 PPPCCCCC PPPCCCC
 - 23 PPPPPP PPPPPP PPPPPP
 - 11 PPPCCCCC PPPCCCCC

"Child Centric"
"Child Sticky 15%"
"Parent Centric 3%"
Closer look

- Most of resolvers are child centric and do not stretch, but some stretch some of the time
 - Child Sticky 15% (108)
 - Parent Centric 3% (23)
 - Child Centric (517) 72%
 - 345 do not follow exact pattern 48%
 - 172 exact pattern 24%
 - Mostly Child Centric 10% (72)
 - Partial sticky, relaxed handling of TTL, answer caching and reuse, ……
Behavior by implementations?

- 151 different version strings
- All Bind releases 9.3 and later are child centric
 - 9.2.3 and up are Child Centric
 - Older are Child sticky
- Bind 9.x shows up 305 times or 42%
 - 18 Parent Centric or mostly PC
 - 74 Child Sticky but only 7 say 9.2.1 or 9.2.1
 - 186 Mostly Child Centric
 - 25 Other
 - 62 Bind-9.6…. Only 12 behave according to my freshly compiled copy. But:
 1 PPPCCPPPPPPCCPPPPP
 1 PPPPCPCPPPPCCPC
 1 PPPPCPCPPPCCPC
 1 PPPPCPCPPPCCPC
- Only 8 claim to be Bind 8.x
- none Bind 4.x
Concerns?

- Nominum and Google DNS are Parent centric
- DNSCache and OpenDNS are Child Sticky
- There seem to be many cases where resolvers are not going to authority as expected:
 - Going through forwarder
 - Out of band synchronization
 - Minimum TTL enforcement
 - Or I’m asking any cast server cluster
Resolver query patterns

• How do Resolvers scatter queries?
 • If a resolver discovers a domain and does not know about the name servers: it will ask a random resolver,
 • second query will go to DIFFERENT address
 • After all are probed queries will be concentrated inside a “band” of distance.

• How often do resolvers “forget” about closest authoritative server.

• What is the market share of busy resolvers vs sporadic ones
 • Depends on the domain being queried e.g. ISP resolver in Brazil will likely show up as sporadic at a.nic.cz but busy at a.dns.br

• Does Address == resolver
 • We see many cases of multiple recursive resolvers behind NAT’s
Resolver query patterns: effects

- **Sporadic** resolver will send DNSKEY query to the servers I see 66.7% of the time
- **Busy** resolver is likely to send none or all DNSKEY or DS query to servers I see
- **Busy** resolver that is “tied” to PCH site(s) will show up as **Sporadic** at Afilias sites and vice versa.
- How different are the query patterns at different sites?
 - Does prevalence of DNSSEC validation depend on regions?
Depressing Summary

• We do not know a lot about
 • Resolver NS set usage
 • Resolver query scattering
 • Resolver Market share,
 • Geographical differences

• We can not build reliable models of using DNS samples to answer basic questions

• What can be done to improve things?
 • Can we look at big collections and build models.
 • How can models evolve over time
 • For example: Bind-9.8 changed RTT banding from prior versions.
Positive ways forward

- What Models are needed:
 - List of models

- Can we find answers in existing traces
 - Documentation as what to look for and how

- Experiments to expose resolvers from the consumer side.
 - What do we want to know and how can we “trick” resolvers to expose their behavior?

- Revisit the design and implementation choices for query scattering?