
Innovative uses as result of
DNSSEC

AKA: Some happenings in the
DANE* WG in the IETF.

* DNS-based Authentication of Named Entities

Some background...

•  When you connect to https://www.example.com you use
SSL (actually TLS) to secure your connection.

•  Need a public key.
•  Carried in a PKIX cert.
•  Need to make sure it's the right cert.

MITM - Man In The Middle

Public Key Infrastructure
•  example.com generates public / private keypair.
•  Certificate Signing Request (CSR):

o  Public part of the key
•  Ships the CSR off to a Certificate Authority (CA)
•  CA (usually) contacts example.com and verifies the info.
•  CA issues a certificate:

o  Public part of the key
o  Hostname
o  CA's Signature.

CA's signature binds the key and hostname together and
prevents tampering.

Relying Party (this is you!)

•  Download the cert.
•  Check that the hostname matches.
•  Check a bunch of other bits in the cert that are important,

just not important for this discussion :-).
•  Check that the signature is valid.
•  Connect!

Have we actually solved anything yet?

•  Initial problem was that we didn't have a way to validate the
key provided really is for example.com

•  CA has signed a certificate binding the key and name
together -- but, to verify the signature we need to know the
CA's key....

•  Well, the CA (root certificates) are basically trust anchors,
just like the DNSSEC IANA trust anchor.

•  Come preconfigured in your browser and your operating
system.

•  You inherently trust the preconfigured CAs.

Apple OSX TA Store
163 items....

Mozilla (Firefox)
155 items....

Windows / Internet Explorer

 ?

Total....

Including all of the root certificates and the certificates that they
have signed that allow others to sign, and certificates that they
have signed that allow others to sign and....

 ~ 1,400.

Yay! More choice is good!

No.

•  When a user validates a cert, they have no way of knowing
which CA should have signed it.

•  Issues:
o  Malicious CA
o  Incompetent CA
o  Compelled CA.

Small chance, big risk.

DANE WG
•  The big issues are way too many trust anchors...

•  DNSSEC has one trust anchor and:
o  It's free.
o  It provides the ability to securely publish information.
o  Only the "domain owner" can publish at a node.
o  There is an easy discovery mechanism: the DNS itself!
o  Supports A ﻿uthenticated Denial of Existence.

DANE - Leveraging DNSSEC

•  Take your existing cert.
•  Calculate the hash ("fingerprint").
•  Publish this in the DNS (in a TLSA RR), protected with

DNSSEC.
•  Relying parties grab the cert, compute the hash and

compare it to a TLSA record.

 If they match, all is good...

If not, something evil is afoot...

* Image by Martin Cathrae, http://www.flickr.com/photos/suckamc/ (CC BY-SA 2.0)

But wait... there's more...
•  In order to get a (DV) cert for a domain, all you need to do is

prove you control the domain.

•  Usually this is verified by proving you can receive email at (a
specific address) at the domain.

•  Anyone who controls the DNS for a domain can control
where the mail for the domain goes.

•  (Ability to control DNS for a domain) == (Ability to get cert
for that domain).

•  A rogue DNS admin can get a certificate for domains
he administers.

What exactly does the CA do again?
•  CA's signature binds the key to the hostname.

•  The work in DANE will allow a site to generate and (self-
sign) a certificate and publish the cert information in the
DNS.

•  As only the DNS admin can publish a TLSA RR in a domain,
and the admin already has the ability to get a cert for that
domain, we feel that DANE validated certs have
(approximately) the same level of trust.

Almost the end!
•  DNSSEC was supposed to secure DNS and prevent

spoofing / cache poisoning....
•  But, it's actually a secure publishing method that enforces

limits on the scope where a user can publish.
•  This opens the door for all sorts of interesting and innovative

applications.

For more information:
1. Come find me (or Ondřej Surý)
2. http://datatracker.ietf.org/wg/dane/charter/

FIN

Certificate.
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 2f:df:bc:f6:ae:91:52:6d:0f:9a:a3:df:40:34:3e:9a
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=ZA, O=Thawte Consulting (Pty) Ltd., CN=Thawte SGC CA
 Validity
 Not Before: Dec 18 00:00:00 2009 GMT
 Not After : Dec 18 23:59:59 2011 GMT
 Subject: C=US, ST=California, L=Mountain View, O=Google Inc, CN=www.google.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:e8:f9:86:0f:90:fa:86:d7:df:bd:72:26:b6:d7:
 44:02:83:78:73:d9:02:28:ef:88:45:39:fb:10:e8:
 7c:ae:a9:38:d5:75:c6:38:eb:0a:15:07:9b:83:e8:
 [SNIP]
 Signature Algorithm: sha1WithRSAEncryption
 9f:43:cf:5b:c4:50:29:b1:bf:e2:b0:9a:ff:6a:21:1d:2d:12:
 c3:2c:4e:5a:f9:12:e2:ce:b9:82:52:2d:e7:1d:7e:1a:76:96:

