(Towards) a Threshold Cryptographic Backend for DNSSEC

Antonio Cansado
acansado@niclabs.cl

Pablo Sepúlveda
psepulv@niclabs.cl

Tomás Barros
tbarros@niclabs.cl

Victor Ramiro
vramiro@niclabs.cl

OARC 2011
NIC Chile Research Labs is an Applied Research and Technology Transfer Laboratory, founded by NIC Chile (the Chilean ccTLD) on 2008.

Our Mission: To develop world class research on Internet domain, targeting technology transfer for the regional industry

More info: http://www.niclabs.cl
DNSSEC Architecture

- Zone DB System
- Signer Robot
- DNSSEC Zone Generator
- Authoritative Server
- Cryptographic Provider
- Cryptographic Backend
DNSSEC Implementations
DNSSEC Implementations

Zones need to be re-signed periodically.

Diagram:
- Zone DB System
- DNSSEC Zone Generator
- Signer Robot
- Cryptographic Provider
- Authoritative Server
- PKCS#11

Reference:
- DNS BIND

Sunday, March 13, 2011
DNSSEC Implementations

Zones need to be re-signed periodically.

- Keys cannot be cloned(*)
 - Server replication requires different keys
 - Parent zone must know keys of its delegated zones (DS) in order to hold the chain of trust
DNSSEC Implementations

Zones need to be re-signed periodically.

Keys cannot be cloned(*)
- Server replication requires different keys
- Parent zone must know keys of its delegated zones (DS) in order to hold the chain of trust

(*) Keys cannot be cloned:
- Server replication requires different keys
- Parent zone must know keys of its delegated zones (DS) in order to hold the chain of trust.
DNSSEC Implementations

Keys cannot be cloned (*).

- Server replication requires different keys.
- Parent zone must know keys of its delegated zones (DS) in order to hold the chain of trust.

Zones need to be re-signed periodically.

PKCS#11

Roy Arends, Nominet UK

UK’s DNSSEC crash of Sep/2010

HARDWARE FAIL! Sunday, March 13, 2011
DNSSEC Implementations

Keys cannot be cloned

- Server replication requires different keys
- Parent zone must know keys of its delegated zones (DS) in order to hold the chain of trust

Zones need to be re-signed periodically.

PKCS#11

Our work provides an alternative to HSM

Roy Arends, Nominet UK
UK’s DNSSEC crash of Sep/2010

September 10th 19:38:11

HARDWARE FAIL!

Our work provides an alternative to HSM
Our Approach: Distributed Cryptographic Backend
Our Approach: Distributed Cryptographic Backend

Diagram:
- Zone DB System
- Authoritative Server
- Signer Robot
- DNSSEC Zone Generator
- Cryptographic Backend
 - N1
 - N2
 - N3
 - N4
 - N5
Our Approach:
Distributed Cryptographic Backend
Our Approach: Distributed Cryptographic Backend

• Distributed
 • Backend is implemented by means of n nodes
 • Private key is split into shares and distributed among these n nodes
Our Approach: Distributed Cryptographic Backend

- Distributed
 - Backend is implemented by means of n nodes
 - Private key is split into shares and distributed among these n nodes
- Fault-Tolerant
 - A subset of nodes can fail without system disruption
Our Approach:
Distributed Cryptographic Backend

- Distributed
 - Backend is implemented by means of n nodes
 - Private key is split into shares and distributed among these n nodes
- Fault-Tolerant
 - A subset of nodes can fail without system disruption
- Robust
 - Failures and attacks are mitigated by implementing nodes in different programming languages and operating systems
Our Approach: Distributed Cryptographic Backend

- Distributed
 - Backend is implemented by means of n nodes
 - Private key is split into shares and distributed among these n nodes
- Fault-Tolerant
 - A subset of nodes can fail without system disruption
- Robust
 - Failures and attacks are mitigated by implementing nodes in different programming languages and operating systems
- Secure
 - No one holds the complete private key
 - More than k the nodes must be compromised to authorize faked signatures
How does it work?

- Based on “Practical threshold signatures”, by Victor Shoup in Eurocrypt 2000

- RSA Threshold Signature system \((n, k)\)

 - Private Key \(SK\) is divided among \(n\) peers \(\{SK\}_i^n\)
 - Just \(k\) peers, \(k < n\), are needed to create a signature
 - \(k\) shares are put together and validated against the Public Key \(PK\)

- Designed for systems with high volume of signatures (like DNSSEC)
Incoming Queue

Outgoing Queue

Signature Dealer

SK_1^5 SK_2^5 SK_3^5 SK_4^5 SK_5^5
Work in Progress

- Prototyped, but no benchmarks yet

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottleneck at the Dealer</td>
<td>P2P Architecture</td>
<td>Load balancing</td>
</tr>
<tr>
<td>Single point of failure</td>
<td>Every node is a Dealer</td>
<td>No single point of failure</td>
</tr>
<tr>
<td>Private key is created and</td>
<td>Distributed RSA</td>
<td>Shares are directly created at the target</td>
</tr>
<tr>
<td>then divided and distributed</td>
<td></td>
<td>nodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Key creation is distributed</td>
</tr>
</tbody>
</table>
Summary of the Approach

- Distributed cryptographic backend for DNSSEC
- Can replace HSMs, or complement them
- May be integrated with other DNSSEC engines (OpenDNSSEC, ...)

Advantages
- Distributed
- Robust
- Low-cost
- No one holds the complete key
- Risks can be bounded arbitrarily

Disadvantages
- Authentication with Dealer
- Number of shares is fixed upon key creation
- Slower than RSA
- Some bandwidth is used
Questions?

Thanks for your attention

More info: http://dnssec.niclabs.cl/
Threshold RSA

- Based on “Practical threshold signatures”, by Victor Shoup in Eurocrypt 2000

\[
RSA = (PK, SK)
\]

\[
TC_{RSA} = (PK, \{SK\}_i^n, \{VK\}_i^n)
\]

\[
PK = (n, e) \quad n = pq
\]
DNSSEC

• DNS SECurity extension to guarantee the origin and the authenticity of DNS records by means of Public Key Infrastructure.

• World Milestone: 15/Jul/2010 Root zone was signed and available for use.

• Roadmap for DNSSEC in NIC Chile => Deploying DNSSEC on CL servers

http://dnssec.niclabs.cl/