CIRA’s experience in deploying IPv6

Canadian Internet Registration Authority (CIRA)
Jacques Latour
Director, Information Technology
Singapore, June 20, 2011
IPv6

• New protocol (~15 year old)
• Not an extension of IPv4
• Not backward compatible
• New learning curve
• IPv6 coexists with IPv4
 – Not a transition
 – Not a migration
 – It’s a journey!
IPv6 Adoption Strategy

- IPv6 Discovery & Research
- Perform an IPv6 Readiness Assessment
- Define IPv6 Objectives (can’t do everything)
- Develop a Project Plan
- Develop a detailed IPv6 Architecture & Design
- Development, testing and pilot mode
- Implement in production
- Assess IPv6 registrar accreditation tests
Objectives

- Not everything needs to be IPv6 on day 1
 - World IPv6 Day, June 8, 2011
 - Internet Perimeter & DMZ (www.cira.ca)
 - IT Organization
 - Permanent
 - Presence
 - Support
Critical Path

- Training [✓] ongoing
- Develop an IPv6 security policy [✓] – v1.0
- Order IPv6 Transit [✓] – New circuits...
- IPv6 inside Corporate & DMZ [✓]
- IPv6 on web servers [✓]
- IPv6 for IT Operations [✓]
IPv6 Internet Transit

• Architecture guideline:
 – Internet transit providers must support IPv4 & IPv6

• We need to push Canadian ISPs for IPv6 enabled transits
 – For the enterprise
 – If not, cancel/discontinue IPv4 only Internet transit
 – Order new IPv4/IPv6 Internet transits
Architecture & Design

- Need to define architecture guidelines & security policies for developing & implementing our IPv6 solution

- Address the results from our “Readiness Assessment” report
 - Some of our load balancers do not support IPv6
 - Some of our Internet transits do not support IPv6
 - Need to test our custom/in house application for IPv6 compliance
 - Overall, we’re in good shape to **coexist** with IPv6
Architecture Guidelines

“Rules of engagement”

• Keep IPv4 as-is

• Dual Stack
 – All systems participating in the IPv6 implementation must support a concurrent IPv4 and IPv6 stack

• No IPv6 Tunnelling
 – Usage of IPv6 tunnelling mechanisms such as ISATAP, Teredo, 6to4, 6rd are disabled and not permitted

• Native IPv6 Transit
 – IPv6 transit must support IPv6 natively without the use of tunnelling
Architecture Guidelines

• One host, one IP
 – All IPv6 hosts/interface will use one Global address
 – Unique Local Addresses (ULA) must not be used

• No Network Address Translation (NAT)
 – NAT66, NAT64 & NAT46 technologies not permitted

• IPv6 Address Assignment - Privacy
 – The interface identifier (64 bit) part must be randomly/manually generated (Manual, RFC-3041)
 – MAC addresses of internal device must be kept confidential
 – Internet accessible Global Addresses must not use EUI-64 (MAC + FFFFE)
Architecture Guidelines

• **IP Addressing Plan**
 – Based on most efficient algorithm (RFC 3531)
 – Leftmost bits (48, 49, 50,...) are assigned to segment the site
 – The rightmost bits (63, 62, 61, ...) are assigned to number the links.

• **IPv6 Address Allocation**
 – DHCPv6 will be used where possible
 – We tested MacOSX Lion "Developer Preview” for DHCPv6 OK!!!

• **IPv6 Address Lifecycle (Life/Timeout)**
 – Need to assess impact on logging, correlation, & applications of having temporary IP addresses (Windows 7, MacOSX)
More Guidelines

“Can’t remember all those IPv6 addresses”

• **DNS Address Mapping**
 - All static IPv6 address entry must have AAAA and PTR reverse mapping records
 - Naming convention required (interface level)

• **Routing**
 - Native IPv6 Peering, BGPv4
 - Native IPv6 Routing, OSPFv3
 - Router redundancy, HSRPv6
 - OSPFv3 & BGPv4 secure routing adjacencies using filtering, passwords and hashes.

• **NetFlow data collection**
 - Use NetFlow 9 for IPv6 flow exports
Security Guidelines

“because we don’t NAT IPv6”

• Firewall
 – Need excellent change & configuration management processes
 – “No NAT, check permit ANY/ANY = wide open Internet”

• Network Perimeter
 – IPv6 enabled firewalls
 – IPv6 deep packet inspection IDS/IPS

• Desktop, Hosts & Device Hardening
 – IPv6 host enabled firewalls
 – IPv6 HIPS (host based IPS)

• Security Management
 – SIEM alerts, regular review of logs for all IPv6 enabled devices.
 – Log & monitor all IPv6 traffic Corporate & DMZ
Security Policy

• Default deny ANY/ANY of IPv6 addresses and services on perimeter devices such as firewalls, VPN appliances and routers.
 – Log all denied traffic

• Block 6to4, ISATAP (rfc5214) and TEREDO (rfc4380) and other IPv6 to IPv4 tunneling protocols on perimeter firewalls, routers and VPN devices as this can bypass security controls.
 – Block TEREDO server UDP port 3544
 – Ingress and egress filtering of IPv4 protocol 41, ISATAP and TEREDO use this IPv4 protocol field

• Filter internal-use IPv6 addresses at border routers and firewalls to prevent the all nodes multicast address (FF01:0:0:0:0:0:0:1, FF02:0:0:0:0:0:0:1) from being exposed to the Internet.

• Filter unneeded IPv6 services at the firewall just like IPv4.

• Filtering inbound and outbound RH0 & RH2 headers on perimeter firewalls routers and VPN appliances.

Based on best practise & RFC Recommendations
Security Policy

- **ICMPv6 messages to allow RFC4890.**
 - Echo request (Type 128) Echo Reply (Type 129)
 - Multicast Listener Messages to allow
 - Listener Query (Type 130) Listener Report (Type 131)
 - Listener Done (Type 132) Listener Report v2 (Type 143)
 - Destination Unreachable (Type 1) – All codes
 - Packet Too Big (Type 2 message)
 - Time Exceeded (Type 3) – Code 0 only
 - Parameter Problem (Type 4 message)
 - SEND Certificate Path Notification messages:
 - Certificate Path Solicitation (Type 148)
 - Certificate Path Advertisement (Type 149)
 - Multicast Router Discovery messages:
 - Multicast Router Advertisement (Type 151)
 - Multicast Router Solicitation (Type 152)
 - Multicast Router Termination (Type 153)

Security Policy

- **Deny** IPv6 fragments destined to an internetworking device.
- Drop all fragments with less than **1280 octets** (except on the last one)
- Filter ingress packets with IPv6 multicast (**FF05::2 all routers, FF05::1:3 all DHCP**) as the destination address.
- Filter ingress packets with IPv6 multicast (**FF00::/8**) as the source.
- Use IPv6 hop limits to protect network devices to drop hop count greater than 255.
- Configure “**no ipv6 source-route**” and “**no ipv6 unreachable**” on external facing perimeter devices.
- Drop all **Bogon** addresses on perimeter firewalls, routers and VPN appliances.

Learning curve...
Security Policy

- The following addresses should be blocked as they should not appear on the Internet, based onrfc5156
 - Unspecified address: ::
 - Loopback address: ::1
 - IPv4-compatible addresses: ::/96
 - IPv4-mapped addresses: ::FFFF:0.0.0.0/96 ::/8
 - Automatically tunneled packets using compatible addresses: ::0.0.0.0/96
 - Other compatible addresses:
 - Deny false 6to4 packets:
 - Deny link-local addresses: FE80::/10
 - Deny site-local addresses: FEC0::/10
 - Deny unique-local packets: FC00::/10
 - Deny multicast packets (only as a source address): FF00::/8
 - Deny documentation address: 2001:DB8::/32
 - Deny 6Bone addresses: 3FFE::/16

15 years of legacy?
Testing & Lab

• Developing an IPv6 lab
 – Test applications
 • web, cookies, application logging
 – Test load balancers, routers, firewall
 – Log analysis
 – Security - IDS/IPS/SIEM
 – Packet capture
 – Monitoring
 – Network connectivity, routing protocols
Conclusion

• Dual Stack
• Limited deployment
• Planning
• Technical team trained to support IPv6
• Security policy
• Lab testing
• Pilot project
• Production implementation
• Success on June 8th – Try www.cira.ca on IPv6
ccNSO Tech Day Lunch
Sponsored by CIRA
At Café Swiss Swissotel