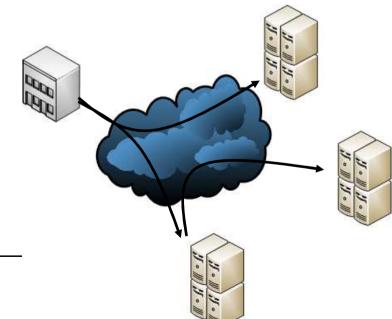
IPv6 Addressing and Implementation

Rodolfo Kohn Software Architect Intel Software de Argentina rodolfo.kohn@intel.com

IPv6 - Agenda

- Why IPv6?
 - No business case
 - Different drivers
- IPv6 main features
- IPv6 Transition
- IPv6 Status


- IPv4 has been the Internet Protocol for almost 30 years
- In the early nineties, IPv4 address exhaustion became a concern
- A new IP protocol was devised and standardized by IETF in 1995: IPv6
- Since then it was always predicted IPv4 address depletion in the next 3 years
- However, it has not happened so far
- And the business case has been fading

The world is changing

- More people being connected to the Internet:
 - Growth of connected population in Asia, Latin America, Africa
- Internet and connectivity is not an entertainment but an essential need

New paradigms for servers

- SaaS (Salesforce.com)
- laaS (EC2)
- Cloud Computing
- Mega-Datacenters (tens and hundreds of thousands of commodity low-end servers)

New paradigms for servers

- Virtualization
 - Migration (MIPv6), IPv6 address
- Autonomic Computing (Self-managed systems)
 - In the server segment and client segment
 - Autoconfiguration and neighbor discovery
 - EFIPSANS <u>www.efipsans.org</u>

Billions of mobile devices

- Embedded systems: digital home, digital health, automotive, military, wireless sensor networks
- Ubiquitous devices: cameras, smartphones
- New form factors: netbooks, MIDs
- Always-on data connection
- Different link technologies: 802.11, 802.15.x, 3G, 4G (WiMAX, LTE), 802.21 ...
- PAN, Ad-hoc networks, Wifi Direct (My Wifi)
- P2P, paging, notifications

IPv6 - Main Features

- Address size is 16 Bytes.
- Extended address hierarchy.
- New header format: 1 Base Header + n Extension Headers.
- Different support for options (comparing to IPv4).
- Support for protocol extensions (e.g. Mobility support).

IPv6 - Main Features

- Support for autoconfiguration and renumbering.
- Support for resource allocation: Flow label and service type.
- Support for authentication and privacy is specified: IPsec natively supported

IPv6 – Headers

- An IPv6 datagram has 40-octect Base Header and n Extension Headers.
- Advantages:
 - Improves performance on header processing.
 - The user can choose which extension headers to include and which to omit.
 - Flexibility for new options: more extension headers can be added.

IPv6 – Base Header

• An IPv6 datagram has 40-octect Base Header and n Extension Headers.

Version	Traffic Class	Flow Label	
+-+-+-+-+	Payload Length		Hop Limit
+-+-+-+	-+-+-+-+-+-+-+-+	+-	+-+-+-+-+-+-+-+-
+			+
+		Source Address	
1		Source Address	
 			1
' +-+-+-+	-+-+-+-+-+-+	+-	י + - + - + - + - + - + - + -
+			+
+	De	estination Address	+
+			÷
+-+-+-+	-+-+-+-+-+-+-+	+-	-+-+-+-+-+-+-+

IPv6 – Headers

- In order to Extract any header information from an IPv6 datagram a sequential search from the base header is required. Every header has a "next header" field.
- Different possibilities for datagrams with base header and n extension headers:

Base Header NEXT=TCP	TC	P segment		
Base Header NEXT=hbh	hbh Header NEXT=TCP		TCP segment	
Base Header NEXT=hbh	hbh Header NEXT=AUTH	AUTH Header NEXT=TCP	TCP segment	

IPv6 – Extension Headers

- Recommended order:
 - Base header
 - Hop-by-Hop options header
 - Destination options header-1
 - Source Routing header (Type 0)
 - Type 2 routing header (for mobility)
 - Fragment header
 - Authentication header (AH).
 - Encapsulating Security Payload (ESP) header
 - Destination Options header-2
 - Upper-layer header

IPv6 – Text Representation of Addresses

- RFC 4291
- 16 Bytes: 128 bits.
- Text representation: Colon Hexadecimal Notation.

2004:FFED:01:0:0:0:0CC:A1BC

2004:FFED:1::0CC:A1BC

0:0:0:0:128:FA:1234:5678

::128:F0A:1234:5678

::192.168.0.5 (x:x:x:x:x:d.d.d.d for embeddedIPv4 addresses)

Note: Zero compression can be applied only once.

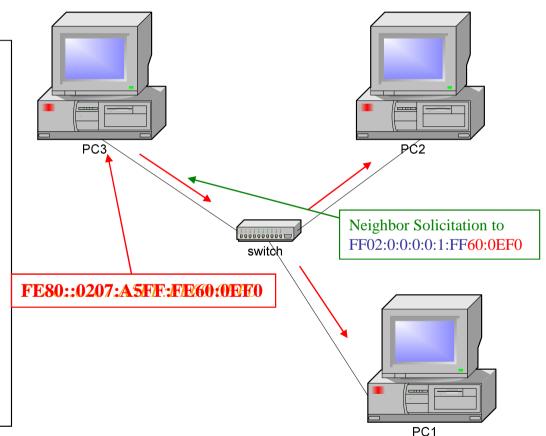
IPv6 - Addresses Address types

- Unicast: specifies a single interface (a single node).
- Anycast: specifies a set of interfaces (typically belonging to different nodes). They are unicast addresses assigned to different interfaces. The pkt is delivered to exactly one of them, the nearest one.
- Multicast: specifies a set of interfaces (typically belonging to different nodes). The pkt is delivered to all of them.

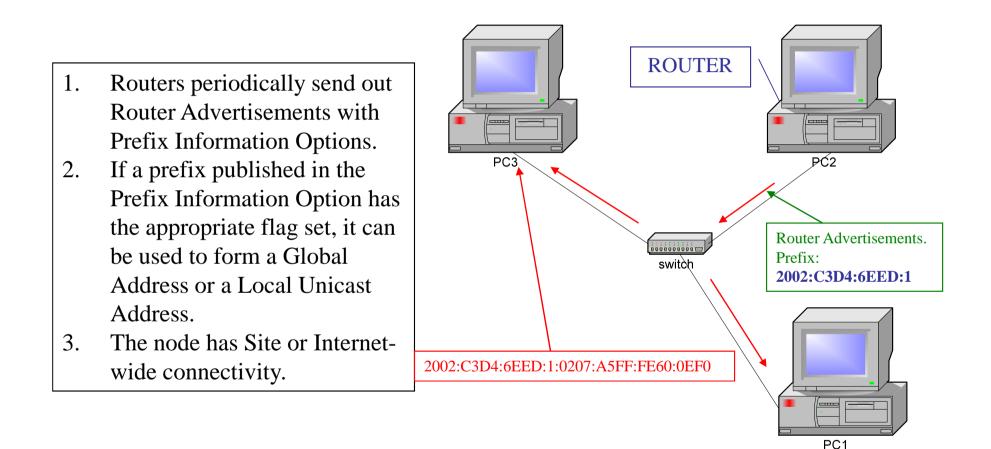
Note: broadcast is handled with multicast addresses.

IPv6 - Addresses Types and Scopes

Address Type	Binary Prefix	IPv6 Notation
Unspecified	000	::/128
Loopback	001	::1/128
Multicast Addresses	1111 1111	FF00::/8
Link-Local Unicast Addresses	1111 1110 10	FE80::/10
Unique Local IPv6 Unicast Addresses (RFC 4193)	1111 1100	FC00::/7
Global Unicast Addresses (Aggregatable)	everything else	


IPv4-Mapped IPv6 Address: ::FFF:d.d.d.d (used in dual-stack nodes)

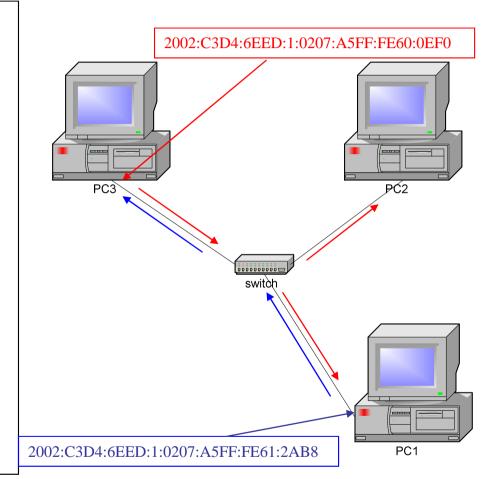
IPv6 – Address Autoconfiguration


- The procedure a host follows to create its interface addresses without manual assistance.
- Autoconfiguration is performed on a per-interface basis on multicast-capable links in multicast-capable interfaces. Begins when the interface becomes enabled.
- It uses Neighbor Discovery Protocol messages.
- Address Autoconfiguration can be:
 - Stateless: without assistance of stateful servers.
 - Stateful: with assistance of a stateful server; for example DHCPv6.
- Both Stateless and Stateful are complementary.

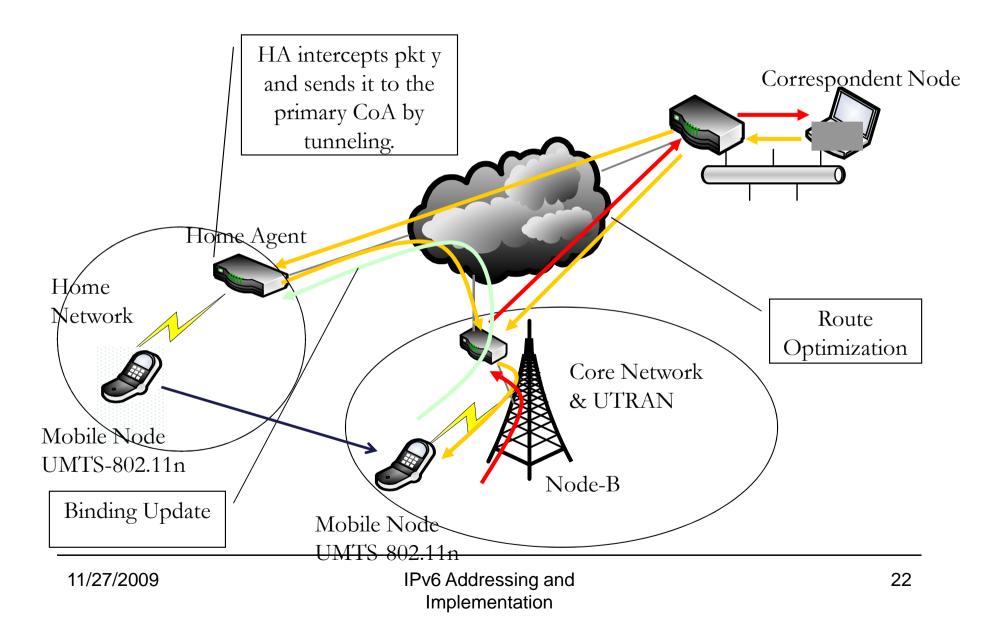
IPv6 – Address Autoconfiguration Address Autoconfiguration Steps – Link-Local Address

- 1. Interface is enabled.
- 2. "Tentative" link-local address is formed.
- Duplicate Address Detection is performed: A Neighbor Solicitation is sent to Solicited-Node Multicast Address of the Target Address
- 4. If the node ascertains the linklocal address is unique, it is assigned to the interface.
- 5. The node has only link connectivity.

IPv6 – Address Autoconfiguration Stateless Address Autoconfiguration - Next Steps



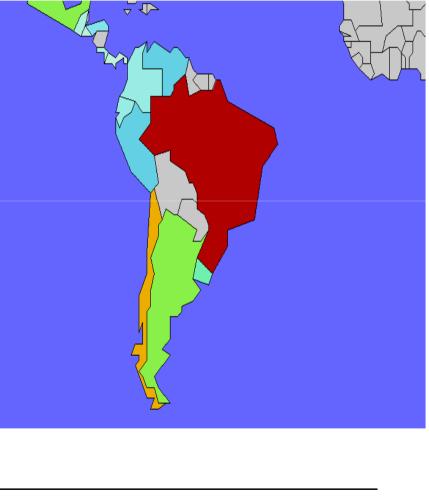
Neighbor Discovery Protocol for IPv6


- This protocol is used in IPv6 to:
 - Determine neighbor's link-layer address, i.e. address resolution (NO ARP).
 - Determine neighbor bidirectional reachability: Neighbor Unreachability Detection.
 - Discover neighboring routers.
 - Learning link specific parameters: network prefixes, MTU, etc.
 - Next-Hop determination and Redirect.
 - Duplicate Address Detection in Address Autoconfiguration.
 - Proxy support.
- Messages used in ND Protocol are part of ICMPv6.

IPv6 – ND Protocol Address Resolution

- 1. PC3 is to send a packet to 2002:C3D4:6EED:1:0207:A5FF: FE61:2AB8 but first it needs to know the corresponding HW address.
- 2. PC3 sends a Neighbor Solicitation asking for the owner of the destination address: it is sent to the solicited-node multicast address for the target addr.
- 3. PC1 reads the Neighbor Solicitation and responds with a Neighbor Advertisement telling its link-layer address.
- 4. PC3 can physically send the packet to the HW (link-layer) address of PC1.

Mobile IPv6



Transition and co-existence

- Slow Transition:
 - IPv4 and IPv6 will co-exist for more than 10 years
- Application must be protocol agnostic
 - Use URL instead of IP address
 - Rely on dual-stack
 - Abstract from protocol-specific
- Technology transition:
 - Teredo
 - 6to4
 - ISATAP
 - Dual-stack

IPv6 Status - BGP mon http://bgpmon.net/blog/?p=166

Position	Country	Score	(Ipv6/IPv4)
1	Holy See (Vatican City State) (VA)	100%	(1/1)
2	Cuba (CU)	60%	(3/5)
3	Fiji (FJ)	50%	(1/2)
4	Uruguay (UY)	35%	(9/26)
5	Tunisia (TN)	33%	(1/3)
5	Senegal (SN)	33%	(1/3)
5	Monaco (MC)	33%	(1/3)
5	Mali (ML)	33%	(1/3)
6	Estonia (EE)	28%	(10/36)
7	Isle of Man (IM)	25%	(1/4)
8	European Region (EU)	22%	(22/99)
9	Madagascar (MG)	20%	(1/5)
9	Bhutan (BT)	20%	(1/5)
10	Luxembourg (LU)	19%	(8/42)
10	Czech Republic (CZ)	19%	(30/159)
11	New Zealand (NZ)	18%	(31 / 173)
11	Costa Rica (CR)	18%	(2/11)
12	Cote D'Ivoire (CI)	17%	(1/6)
12	Virgin Islands, U.s. (VI)	17%	(1/6)
12	Qatar (QA)	17%	(1/6)
13	Japan (JP)	15%	(82 / 537)
13	Viet Nam (VN)	15%	(5/34)
13	Taiwan, Province of China (TW)	15%	(17 / 112)
14	Portugal (PT)	14%	(10 / 70)
14	Netherlands (NL)	14%	(66 / 484)
14	Malaysia (MY)	14%	(9 / 64)
14	Mauritius (MU)	14%	(1/7)
15	Liechtenstein (LI)	13%	(2/16)
16	Egypt (EG)	11%	(5/45)
16	Norway (NO)	11%	(12/111)
16	South Africa (ZA)	11%	(10/88)
16	Trinidad and Tobago (TT)	11%	(1/9)

IPv6 Status

- Most OS's: Windows Vista/7, Linux, Chrome OS
- Products: Microsoft's DirectAccess
- Google since 2008 (<u>http://www.google.com/intl/en/ipv6</u>)
 - Plans to add IPv6 to YouTube
 - http://www.networkworld.com/news/2009/032509-google-ipv6easy.html?page=2
- Devices connecting to Verizon's LTE network (2010) must support IPv6
- US Government agencies are IPv6 ready since 2008
- Comcast is offering IPv6 transit services and has plans for residential IPv6 trials (2010)
- Hurricane Electric, Global Crossing, NTT America
- IPv6 at Olympics

Conclusions and Call To Action

- IPv6 is silently gaining adoption
- It is not a matter of migration but co-existence of IPv4 and IPv6
- New IPv4 addresses could be unavailable in 2011
- IPv6 is not only about more IP addresses
 Opportunity for innovation
- Plan for IPv6 training and pilots in 2010
- IPv6 Task Force?
- GoGo6: <u>http://www.gogo6.com</u>

Questions And Answers?

Link References

- IST IPv6 Portal: <u>http://www.ist-ipv6.org</u>
- IPv6 Forum: <u>http://www.ipv6forum.org</u>
- Argentina IPv6 Task Force: <u>http://www.ar.ipv6tf.org</u> (?)
- NTIA comments on IPv6: <u>http://www.ntia.doc.gov/ntiahome/ntiageneral/ipv6</u>
- North American IPv6 Task Force: <u>http://www.nav6tf.org/</u>
- IPv6 and Broadband: <u>www.ist-ipv6.org/pdf/ISTClusterbooklet2005.pdf</u>
- IPv6 Forum Roadmap & Vision: <u>http://www.6journal.org/archive/00000261/02/WWC_IPv6_Forum_Roadmap__Visio_n_2010_v6.pdf</u>
- IETF: <u>www.ietf.org</u>
- HP IPv6 tutorial: <u>http://h10026.www1.hp.com/netipv6/IPv6_seminar_Oct2004.pdf</u>
- IPv4-IPv6Transition:
 - http://www.6journal.org/archive/00000046/01/trans_ipv6_v014.pdf
 - <u>http://usipv6.unixprogram.com/North_American_IPv6_Summit_2004/</u> IPv6_Tutorial/marc_blanchet_tutorial_ipv6_transition.pdf