SMILLA - automatic S/MIME encryption

sys4.de

What is the problem?

Email security is hard

PGP

- Key generation
- Key publication (key-server)
- > Key rollover/updates
- > Key revocation

S/MIME

- Generating/Requesting a certificate
- Trust in CertificationAuthorities
- > Distribution of certificate(s)
- No policy channel
- > Revocation is complicated

Br0ken CA Model

- Any CA may issue certificates for any domain
- CAs have been compromised in the past
- CAs have issued wrong or unauthorized certificates

DANE to the rescue

- > DANE DNS-based Authentication of Named Entities
- Allows the use of self-signed certificates
 (certificates without in-certificate trust-chain)
 - The trust chain used in the DNSSEC trust chain
- > DANE enables opportunistic encryption
- > Encryption without manual intervention

SMIME with DANE

SMIMEA Resource Record

- > Authenticates email certificates (x509) for S/MIME
- > Store hash or certificate in DNSSEC secured domain
- > Hashed email localpart
- Allows for self-signed certificates
- > Removing the RR revokes a certificate

SMILLA

- > Uses MILTER (Mail Filter) API for Postfix and Sendmail
- > Aimed at mail provider and organizations that operate their own email infrastructure
- > Looks for x509 certs in SMIMEA records
- > Once a record is found, un-encrypted mail will be encrypted
 - SMIMEA record must be DNSSEC secured
 - Mail must not already be encrypted (via S/MIME or PGP)
 - Transparent for the user "it just happened"

SMILLA Use Cases

- > Encrypt Outbound Mail
 - Mail is encrypted before sent out to the Internet
 - > Secures the transport all the way to the recipient
- > Encrypt Inbound Mail
 - Mail is encrypted on reception
 - Secures email on storage (for example on a "cloud" server)

bob@example.com

DNS(SEC) resolver

(1) Bob published SMIMEA record in DNS

(2) Alice sends

an email to Bob

They have never

exchanged certificates

or keys

bob@example.com

Mail-Server Bob

Mail-Server Alice

Alice

DNS(SEC) resolver

bob@example.com

Mail-Server Bob

DNS(SEC) resolver

Alice

Mail-

Server Alice

(3) Mail server sees that the mail is un-encrypted, asks smilla to look for an S/MIME certificate in DNS

bob@example.com

(4) smilla requests the SMIMEA Record for Bob's mail address

Mail-Server Bob

authoritative DNS for example.com

Mail-

Server Alice

bob@example.com

Server Bob

Mail-

Mail-Server Alice

(5) DNSSEC signed response Is validated inside the DNS resolver

DNS(SEC) resolver

bob@example.com

(6) smilla encrypts the mail using the x509 S/MIME certificate from DNS

Mail-Server Bob

Mail-Server Alice

Alice

DNS(SEC) resolver

bob@example.com

(7) Bob decrypts the mail using his private key

Mail-<u>Se</u>rver Bob

Mail-Server Alice

DNS(SEC) resolver

Future work: autoencrypt-milter

- > Merge with Paul Wouters "openpgpkey-milter"
- > SMIMEA and OPENPGPKEY aware MILTER
- > Transparent for users
- > In- and outbound encryption
- To be released as Open Source as soon as RFCs become standard at https://github.com/sys4/

Takeaway

- Mail users care about security but they fear wrangling with encryption
- DANE lowers the barrier for email encryption
- > Opportunistic "end-to-end" encryption
- > SMILLA is open source installation is easy one-time-cost

sys4.de

https://sys4.de/download/smilla-en.pdf