
COPENHAGEN – How It Works: DNS Fundamentals EN

Note: The following is the output resulting from transcribing an audio file into a word/text document.
Although the transcription is largely accurate, in some cases may be incomplete or inaccurate due to
inaudible passages and grammatical corrections. It is posted as an aid to the original audio file, but should
not be treated as an authoritative record.

COPENHAGEN – How It Works: DNS Fundamentals
Monday, March 13, 2017 – 17:00 to 18:30 CET
ICANN58 | Copenhagen, Denmark

STEVE CONTE: Okay. I’m not expecting a huge turnout here because we’re up

against the public forum. So all of you guys, get up, come to the

table. Come on. We’re going to change this around a little bit

because we don’t have a whole bunch of people here.

 So we’re going to tailor this around you guys. I’ve got 68 slides

that I can present and put you all to sleep before dinner time or

we can make this fun, as much fun as DNS can be and a little

interactive.

 My thought is that I’ll go through the Resolution Process Map

stuff, go over a couple of slides, and then I really want to open it

up and find out why you guys are here. What specifically about

DNS fundamentals you’re interested in? Let’s take a deeper dive

and see if we can hit the pieces that — and you can walk away

with the pieces that have interest and meaning to you.

 I’ve got a whole lot of data dump here. I can talk about resource

record types. I can talk about DNSSEC. I can talk about other

things but if it’s not what you want, then my job isn’t complete

here. Because we’re a small group today, I’d rather do that.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 2 of 47

 If you guys are all okay with that, then that’s how I’m going to

go. Okay. I got one thumbs up and I got a whole lot of people

looking at laptops so I’m going to take that as an affirmation.

 I’m Steve. I’m the Director of Programs for the Office of the CTO.

One of the things we do is we run this How It Works tutorial

series and the DNS Fundamentals is one of them and we’re

going to go ahead and go from there.

 The DNS, in the simplest terms, is it’s a way for — don’t sit down

over there. I see you coming in. There’s chairs. Come to the

table. Please join us.

 The reason the DNS came about is because remembering

numbers is hard and you can remember a few phone numbers

and whatnot but you get more than a handful in your head and

then you can’t remember them anymore.

 So the DNS was a way to enable humans to get to IP addresses,

to servers, on the Internet without having to remember the IP

address. It’s fairly easy when there’s IPv4 and you only have 3.4

billion addresses to remember. It gets a little bit more difficult

when you’re jumping to the IPv6 and you have a hundred –

duodecillion numbers to remember.

 I was told one time that if you imagine the size of IPv4 to be

about as big as an iPod, the relative number space for IPv6 is the

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 3 of 47

planet earth. So that’s a lot more numbers to remember.

Naming comes in really handy in general on that.

 We’re going to talk about a couple pieces of the DNS and I’ll

throw this slide up. We’re going to talk about recursive name

servers, we’re going to talk about authoritative names servers,

and we’re going to talk about stub resolvers. If you look at it

from a perspective here, the stub resolver typically sits on your

laptop, your phone, whatever device that you, as the consumer

of the data, have. It has a call to whatever application you’re

using, so in this example here, it’s a phone using Safari browser

and there’s a mechanism within the phone that has a stub

resolver on it.

 When we talk about recursive name servers, that’s typically

going to be an ISP. They will have name servers, if you ever go

into configuration on your laptop and you see an IP address,

you’ll see a subnet mask and you’ll see a subset of name servers.

That’s typically being given to you by your ISP or if you’re at your

office by your office network.

 Then we’ll be talking about authoritative name servers. These

are the root system and the top-level domains which include

.com, .net, include country code TLDs, ccTLDs, .dk — we’re here

in Denmark, or .uk or .za for South Africa.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 4 of 47

 Those are the components we’ll be talking about. I want to do a

quick look at the namespace.

 The DNS was designed as a hierarchal database. Back in the old

days, it was a flat file. It was centrally controlled and it was a

single file in a single entry. It was run by SRI and it was easy

when there was just a smattering of hosts on the Internet. At

that point, in the early days of the Internet, there were just a

couple of universities, some U.S. government agencies, and

whatnot on it and it was really easy to manage.

 But as the Internet became more and more popular, it was clear

that they needed a new methodology to do that so the IETF, the

Internet Engineering Task Force, developed the Domain Name

System, the DNS. They did it as a hierarchal database that’s

distributed and distributed among multiple entities that can

manage different pieces of it.

 When you look at www.example.com, we’ll go up the chain here.

Then we have the dot. The “.” is always inferred there and we’ll

talk about that. But we have .com, which is a registry, a top-level

domain. It’s a registry and it’s managed by a separate entity. It’s

managed by Verisign for this case. Example is another entity.

This is actually the domain name of there. If you have a business,

if you have your own domain name, that would be managed by

you.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 5 of 47

 And then either third-level nodes, which could be another

domain space or it could be a host. In this case, we’re looking at

“www” which would be a host. So when we build that, we have

hosts, we have domain, we have registry, we have root.

 And if we drop it down and we flip it back up, we flip it back up

this way, we have www.example.com and that’s how your

browser knows where to go. All of those are maintained by

different entities. It’s hierarchical. It’s easy to see. It’s easy to

understand where the management points are but it’s

distributed too and that allows for a lot more leeway, a lot more

scalability between that.

 Because now if we look at the domain space and just .com, and

we’re talking about millions and millions of addresses, so having

a single entity for .com and .net and .uk and .coffee and

.whatever, we’d be talking about a huge file that would have to

be updated all the time. By distributing that it makes it much

easier to manage.

 Now, we’re going to jump all the way to number 40. This is all

the data dump. We can go back and talk about this as we have

our dialog but we’re going to talk about how the name resolving

works. Okay. Here we go.

 Resolution process. So you’re on your stub resolver, which is,

again, your laptop, your iPad, your telephone, whatever, and

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 6 of 47

you’re trying to go to an address and you want to go to

www.example.com. You type it into your browser and your

browser sends that request over to the stub resolver. It’s says,

“Hey, I want to go to www.example.com.” And your stub resolver

—and I’m sorry. This is with the assumption that all these are

fresh queries. You just turned on your phone. Your ISP has just

turned on their name server. There’s nothing in the cache. It’s

never done anything before.

 You send the query to the stub resolver. It says, “Hey, I want to

go to example.com. How do I get there?” Stub resolver says, “No

clue.” But when I got on the network, I was given an IP address

for a name server, which is, in this case, 4.2.2.2. So I’m going to

go ask them.

 The stub resolver sends the query over to the cursive name

server and says, “Hey, what’s the address to

www.example.com?” Recursive name server says, “I don’t know

but I know how to get to the root server so I’m going to go ask

the root server.” Were any of you in the last session with RSSAC?

Some. None. Okay.

 It acts now on your behalf. The recursive name server for the

entire rest of the resolution process will be your proxy. It will be

asking these questions until it gets an answer. So, it first goes to

a name server and it says, “Hey, someone in my network wants

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 7 of 47

to go to www.example.com. I don’t know how to get there. How

do you get there?” And the root server says, “I don’t know, but I

know how to get to .com. So I’m going to give you the addresses

for the .com name servers.”

 Here they are. Now your recursive name server goes to the .com

name server and says, “Hey, I want to get to

www.example.com.” The .com name server says, “I don’t know

but I know how to get to example.com. The entity that’s

managing example.com.” It says, “Go talk to the name servers at

example.com.”

 It says, “Okay.” The recursive name server goes down to

example.com, to the name servers and says, “Hey, I’m looking to

get to www.example.com.” Now, the example.com name server

says, “I know how to get there because example is a host in my

zone file in my configuration. Here’s the IP address for

www.example.com.”

 Passes that backup and recursive name server says, “I have the

full answer.” So now I’m going to pass that full answer back to

the stub resolver and that’s going to pass the information back

to the application. In this case, again, Safari.

 At that point, the “www” host is sitting here. At that point, you

can have a direct conversation because you know the IP

address, the unique identifier to that server. Your machine will

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 8 of 47

go and talk directly to the web browser — in this case, the web

browser. It no longer needs the DNS because it knows the IP

address.

 That’s DNS. Thanks for joining me today and if you guys have

any questions then – no, there’s a little bit more.

 That’s cool. That’s great. That took an enormous amount of time

in computer space. That took probably about, maybe up to 100

milliseconds to get all that information. I don’t know if you all

remember dial-up when the Internet first started and how much

you had to wait and wait and wait and wait. 100 milliseconds is

actually really quick in human space and you actually don’t

notice it.

When you’re looking at your laptop and you’re going to

Nike.com because ICANN meetings are boring and footwear is

not and so you want to go look at new sneakers. That resolution

will take very quick but it could be quicker.

Now you want to go to — you’re still at example.com and you’re

browsing the web there and they say, “Well, there’s a file you can

get and it’s at FTP.example.com.” FTP is a protocol. It means File

Transfer Protocol. So you’re like, “Oh, I want that file. I need to

go there.” We go through the process again — go back to that

slide.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 9 of 47

This time we’re going to say — type into your browser. You’re

like, “I’m going to go to FTP.example.com.” You’ve never been

there. You don’t have any kind of history here so you send it to

the stub resolver. Stub resolver sends it the recursive server and

says, “I need to go to FTP.example.com.”

Now, if we took it from before, the next step should be — the

answer is I don’t know and I’m going to go talk to the root. And

the root is going to come back and say, “I don’t know. Go talk to

.com.” .com is going to say, “I don’t know. Go talk to

example.com.”

But we just did that, right? We just did that with

www.example.com so that information of — the information

that the root had gave back and the information that .com

servers gave back the first time is now stored at the recursive

name server. It’s now cached which means that the next step is

actually saying, “I already know how to get to the name servers

for example.com so I’m going to go directly and ask them.”

We’ve just cut off two-thirds of the query process by doing that.

Now, you go to the name server for example.com and say, “Now

I’m looking for FTP.” It says, “Oh, I know that. Here’s the

address.” Send it back and now you can go and download the

file.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 10 of 47

That’s called caching. That takes place at almost every level, at

least in the non-authoritative levels. If we remember stub

resolver, recursive name server, authoritative servers.

Authoritative servers are everything from a root server to a top-

level domain, a registry and to a domain server for a domain

name server as well.

That side doesn’t cache. There’s really no reason for them to be

caching. This side caches because — especially at the recursive

name level, it’s going to be getting a lot of queries. If you’re on

an ISP, if you’re at home, and people are coming through and

you want to CNN or whatever news network you go to, there’s a

good chance that the rest of the community that you’re in, the

rest of the network, that there’s more people asking for those

questions as well.

Caching saves a lot of time and space at the recursive level

because there’s going to be 180,000 other users possibly asking

questions that are similar especially at the top-level domain

level. No matter what the domain is there’s still going to be a

.com, a .net, a .dk, and the chances of people asking those same

questions are really good, at least at that level, so that means

they don’t have to touch the root server. They don’t have to

touch – well, they do have to touch that to get to the next level.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 11 of 47

Does that make sense? Anyone have questions or comments

about that part? Go ahead, please. Use the mic because we do

have people online.

UNIDENTIFIED MALE: So the recursive name server is usually the ISP?

STEVE CONTE: ISP or if you’re in a business network, they’ll have their own

name servers. There are a few that are open on the Internet.

Google runs some. 8.8.8.8, is a well-known open server but those

are usually an ISP if you’re looking at a traditional model.

UNIDENTIFIED MALE: How often do they flush the cache?

STEVE CONTE: That’s a great question. We have something in the domain, in

the zone file so that every domain is managed by a zone file.

That zone file is at every single authoritative server. At the top-

level, the zone file just points to the next level down. It has all

the configurations for the name servers for the next level, for the

top-level.

 At the registry level, it’s pointing down to all the domains. At the

domain level, it has all the information for its hosts. In each of

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 12 of 47

those, in the zone file, there is something called a TTL, a Time to

Live. That TTL is a variable and it really depends on how the

administrator for that zone — someone — there’s an entity here

that’s separate that’s managing this zone compared to

managing this zone or compared to managing Nike.com.

 They will set up a default TTL and what the TTL does is when it

comes back to the proxy, to the ones that are caching, they’ll

say, “Here’s the answer and this answer is good for X amount of

time.” Typical configurations if you just open up a name server

out of the box — name server software out of the box and you’re

just setting it up blindly, typical is 86,400 seconds which is 24

hours. One day. You can set changes to that. You can set

changes based on the host or you can just have one blanket TTL.

So if we say one day, 86,400, when that answer comes back to

the recursive name server, it will cache that and it will start the

timer countdown. After 86,400 seconds it’ll drop it from the

cache. It won’t go necessarily re-ask that question. It’ll drop it

from the cache until that question is asked again.

 It might not happen very often at the domain level but almost

guaranteed as soon as the TTL expires on the root, they’re going

to get another query and they have to go ask the root. So that

probably gets updated most quickly in the cache.

 Makes sense? Any other questions? Kathy?

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 13 of 47

KATHY: We have a question from a remote participant, Alexandrine

Gauvin. What are other examples of recursive name servers

other than ISPs?

STEVEN CONTE: Well, we have the stub resolver so the answer is also cached at

the main server or at the recursive name server, ISP or in your

business. The answer is cached on your computer as well. If you

go to www.example.com and then two hours later you go there

again it doesn’t need to do any questions as long as the TTL is

still not expired. It will go directly and talk to that.

 Usually any kind of name server that’s not authoritative, not a

domain name server, not a top-level domain server, or not a root

server will have caching.

 Anyone else? Yes, please.

UNIDENTIFIED MALE: As I understand it, there is some kind of load distribution for the

root servers by using anycast. How does that work in the next

level for the sublevel domain servers?

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 14 of 47

STEVE CONTE: Anycast is a brand new concept, relatively speaking to the

Internet.

 Let’s step back a little bit on that. There are 13 entities of root

servers. There’s letters A through M. Those entities back before

anycast were limited by the packet size of a UDP packet. UDP

packet means I’m going to send a query — it’s almost a fire and

forget type packet. I’m going to send a query and I’m not going

to worry about what the answer is because you’re either going

to get it or you’re not.

 Unlike TCP, which means I’m going to shake your hand the

entire conversation. UDP is a very small, very fast packet. That’s

why they chose that. The biggest size of a UDP answer was 512

bytes at that point. Within that answer, within that 512 bytes,

they had to pack in the amount of root servers and their relative

IP addresses to that and still have room to have an answer as

well.

 In that, they being the DNS gurus of yesteryear, they decided

that 13 was the magic number. That’s the most amount of DNS

servers — root servers we could pack into a single UDP packet

and send back at one time without fragmenting that answer. So

that’s where we got the magic number 13.

 That was great but we got more and more traffic on the Internet

and 13 servers, although at the time was very redundant, attacks

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 15 of 47

were relatively small compared to today and it was able to

function for quite some time. But it became apparent that the

network, the Internet was scaling was getting larger. Attacks

were getting larger. The distribution of the root servers was not

optimal. There was two root servers, three root servers, four, five

maybe more root servers located in the U.S. Others in mostly

Europe, parts of Asia, things like that.

 If you are out of those regions, your query time to a root server

could be quite long. It could be going undersea cables, you

could be going over satellite feeds. It could be long as far as

latency goes. It could be costly as far as bandwidth goes

especially when you’re going multiple queries for a root server.

 The DNS community started talking about that and they

developed a process called anycast. What anycast does is it

basically makes — it fools the networks. The Internet is about

unique identifiers. You can only have one IP address to one

machine. It’s on a one-to-one ratio. This machine here, my

machine, has a single IP address and none of you in this room

have that same IP address. It’s almost like a fingerprint.

 They had to figure out how to scale the root service and still

maintain the concept of having that uniqueness for it. And

anycast fools the network using BGP, which is a routing protocol

and they determined that if you put a server on one network and

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 16 of 47

announced its IP address and its route and said here’s — I’m

trying to think of L-Root at that time. 198.32.64.12 was L-Root at

that time. Here’s L-Root. It’s over there.

 Now, if I go to a different network and I announce the same

address in the same block, normally if you’re in a TCP mode

that’s going to break things because if I’m standing right in the

middle between the two servers that are exactly the same IP

address I might start my conversation over here but at the same

time I might have a flap and suddenly I’m talking to the machine

over here but it has no record that I was talking to it. It has no

idea and I was like, “What?”

 I have to start my handshake again and that takes time. But with

UDP — UDP is a fire and forget technology. You send a packet,

you’re not expecting an answer. You’re hoping for an answer but

you’re not expecting one. You’re not just handshaking.

 If I’m in the middle, I could send a UDP query to either one of

those because I’m in the middle of the Internet so I’m getting

announcements from both sides. From this network here that

I’m announcing and I’m getting an announcement from this

network. I’m going to choose the best path where I’m sitting.

I could ask that instance and I’ll get an answer because it’s UDP.

Even a second later, if I’m asking that instance and suddenly this

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 17 of 47

is the best path, I still will get the answer and I’ll be like, “Oh,

that’s cool.” I could be doing the same thing from here.

 We were able to mimic and mirror the concept of having a

unique IP address and multiple servers. So we grew from 13

actual servers to over 600 instances of root identities so we still

need to keep the number 13 because we’re still restricted by the

packet size of 512 bytes of a UDP packet. But because of routing

tomfoolery, we are able to pretend that those 13 are actually 600

different announcements on the network.

 Did I get your question in that?

UNIDENTIFIED MALE: Yes, but I was actually more interested in the next level.

STEVE CONTE: Okay.

UNIDENTIFIED MALE: Because I would think that a lot more people will ask something

.com and then those —yeah. There would be a lot more requests

and how do you distribute that load?

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 18 of 47

STEVE CONTE: Once anycast was established and they decided that it worked

quite well, we started working at the root servers and it worked.

Some of the other top-level domains also said, “Hey that would

equally work for us, too.” Some of the other top-level domains

decided that they wanted anycast as well.

 When you’re talking about sharing load then it becomes really

the decision to load share becomes the decision of the client

asking the query, not the server with the response. You’re not

going to go to a server and it’s going to do a traditional load

balance and say, “Well, instance A is loaded up so I’m going to

send you over to instance C.” There’s no control mechanism. I’m

going to be in the network somewhere and I’m going say, “Well,

my fastest route to that server root TLD, whatever, is this way.

I’m going to go talk to that.” Even though there might be three

other instances around the globe.

 That’s why it becomes the network who manages the load

balancing and it’s based on fastest path and all the other

intricacies of routing. It works really well with UDP so it’s really

good for DNS-type traffic. It works not so well with TCPs so when

you’re looking at load balancing in a traditional sense for web-

based technologies or other things, then you really need a

traditional load balancer there that you’ll talk to and then it

makes the decision on where to offset your data.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 19 of 47

 Yep? Please.

UNIDENTIFIED MALE: I wanted to ask about the issue of TTL. What’s the downside, like

setting the TTL to zero let’s say in case — to run my domains to

have those propagation issues when I change name servers?

STEVE CONTE: That’s a great question. The question is: why do we have TTLs of

variable and not just as a static? Why don’t we just not even

have a TTL?

 One of the answers is that TTL is meant to manage your cache. If

you had a TTL of zero, your recursive name server would not be

holding any cache data at all. It’s going to come back and say,

“Oh, my TTL is zero or my TTL is one. Oh, done. Throw it away.”

 As zero it’s going to get the answer and it’s going to say, “Oh,

there’s no TTL. There’s no cache.” And it’s going to throw it away

and that means that anybody else who’s going to the domain,

the fully qualified domain that you’re looking for, the recursive

name server is going to have to go through the whole process

again and rediscover the root and rediscover the TLDs, and then

finally get down to the domain.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 20 of 47

 We’re only talking about hundreds of milliseconds on a single

end user. That’s not that big a deal. When you’re at the root

level, though — sub-question — what do you think gets more

traffic, a TLD or a root server? Anyone? TLDs get a lot more

traffic than a root server. When you’re asking a question, a single

question to a root server — I used to run L-Root back in about

2006 or so and at that time, this is seven years ago, more than

that, an average happy day we were getting about 12.5 million

queries a second and that was with caching.

 Now, image that without caching. The amount of load that

would take place. This, as we went through this, remember this

only points to the top-level domains so when the recursive name

server asks for www.example.com and says, “I don’t know but

here’s .com.” And .com then caches, right? You get the caching

answer so the next time it goes it’s going to ignore the root

server. That’s why a TLD gets more queries than it does the root

server.

 So if we take that no caching scenario again — seven, eight years

ago we had 12.5 million queries a second. Here we probably

have 10, 100 times that and if we have to cache, or if we have

zero caching and we’re querying that over and over, the load on

the network, not just the provider, the data provider that the

TLD is sitting on but the load of the Internet itself will become

explosive.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 21 of 47

 We want to have some level of caching. We need to balance now

what’s a reasonable amount of cache versus what’s too fast and

too slow and that’s really where the administrator comes in.

When we look at the data that the root servers have, they’re only

serving top-level domains. They’re only giving the answers to

the questions to top-level domains.

That doesn’t change very often. Almost, maybe a handful, one

handful a month. Then the numbers are very small. It’s a pretty

safe assumption that if we set this cache to very high that if

there’s a change, it’s okay. We can wait X number of hours. I

think the default for a root server is it caches for 12 hours. If

there’s a change in the data that’s pointing to the TLD servers,

it’s probably not a massive change so 12 hours isn’t so bad and

they can make changes.

Here at the TLD, there’s probably massive amounts of new

registries, new registrations for domain names all the time. If

you look at .com and you look at the amount of registrations

they make, at any given moment, they’re probably getting — I’m

making stuff up here — probably getting thousands per second.

That needs to get into their top-level domain zone file pretty

quickly and if I’m a registrant, if I’m registering a domain name I

don’t want to wait 12 hours or 24 hours before my website is

available. I want that be like now. Right?

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 22 of 47

Their TTL, their Time to Live is probably pretty small because

they want to make sure that the cache goes away quickly so they

can go get a new answer so they can capture those new

registrations.

Now, when we’re here, this is businesses. This is your private

domain name. This is whatever business you work at. For the

most part, some things will change very seldom. Your e-mail

server addresses probably don’t change very often unless you

do a renumber.

Some of your web services probably don’t change very much.

You want to keep those at a reasonable, 12, 24 hours; 8 hours

even is probably fine. That way when they go it they say, “This

data is valid and this data is valid for the next 8 hours.” Unless

you’re really doing so network changes in your network, that’s

going to be fine.

If you are doing network changes and you’re moving your

services from one web server to another web server, then you, as

the administrator of the zone of your domain can go in and say,

“I’m going to keep all the other ones cool. I’m 24 hours or 8

hours on my mail servers is fine but I’m changing servers for my

web service.” I want that to be small because there could be

problems so I’m going to set that down to five minutes of cache.

TTL of five minutes, whatever that comes out to seconds.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 23 of 47

That means that if I make a configuration problem or if there’s

an issue with the new web server I can back out of that quickly

and the most that my customer is going to be impacted is five

minutes because they might hit a cache. They might be pointing

to a server that doesn’t exist anymore, an IP address that

doesn’t exist.

If I keep it small while I’m doing maintenance things, super

handy. I want to make sure that I change that back, once I’m

stable, to a reasonable level. You want to balance the freshness

of your data to the load of the network and the load of the

resolver and stuff like that.

Kathy?

KATHY: Another question from Alexandrine, the remote participant:

“What is the average TTL of most TLD servers?”

STEVE CONTE: I don’t know if there is an average and I honestly haven’t looked

lately. I would guess, well — no, that would take too long. I

would guess a couple of minutes because a TLD, a top-level

domain and I would guess that they’d want to have their caches

flush often so new domains that are inserted, or introduced in

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 24 of 47

that top-level domain, will be propagated on the network

quickly.

 Seconds, you’re saying? 300 seconds is what I’m hearing from

over here. That’s pretty quick. That’s what 60, 120; 3 minutes, 3.5

minutes roughly. Five minutes maybe? Yeah.

 We’ll go into some more detail but that’s really DNS. DNS is

about who you know. Trying to get here. “Hey, do you know

them?” He says, “No, but I know him.” “Hey, I’m looking to get to

www.example. Do you know him?” He says, “No, but I know

him.” Same thing. “No, I don’t know that but I know him.” And

he’s finally like, “I know him.”

 It’s like going to a party and you want to meet that person across

the room but you can’t get to them directly so you need to ask a

friend to introduce you to the next friend, to introduce you to the

next friend, until you finally get to that person you want to meet.

That’s what DNS is. It’s all about who you know.

 What interests you guys? We can go into the nitty gritty, the

details of resource record types and mail exchange record types

and things like that but we’re a small group. I want you to come

away with the question that you came here for in the first place.

 Anyone? Come on. Please.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 25 of 47

UNIDENTIFIED MALE: I’m curious about the — I read an article about introducing the

Blockchain concept into DNS.

STEVE CONTE: Blockchain, I don’t know a lot about. I will refer you — whenever

they say I don’t know. That’s called a referral. I don’t know but I

know there’s going to be a session on Emerging Identifier

Technology taking place this week. I believe tomorrow at 11:00, I

want to say. I think that has Namecoin. I think it might have

some Blockchain information [Frogan]. I’m going to leave that to

those who know what they’re talking about in that realm. So I’ll

give you that referral. Okay?

 Please.

UNIDENTIFIED FEMALE: I’m wondering a little bit about the history of the DNS system, in a

sense. From my understanding of ICANN as an organization,

there were two types of contracts with the United States. One

was the White Paper, Green Paper Stream that led to the DNS

and one was the IANA Stream where they will lose multiple

contracts with their amendments that went to the AoC and then

the JPA. I’m wondering how these two are different, the DNS, the

IANA or is the IANA basically the DNS system?

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 26 of 47

STEVE CONTE: That’s a great question and I’m going to answer it as much as I

can. I’m not a policy person so I’m going to get some of the

details of the contracts wrong. I’ll preapologize for that.

 ICANN was created because before ICANN, the DNS was

operated by a gentleman named Jon Postel and he was based

out of USC University ISI. Back then, if you wanted to run a top-

level domain you would write or call up Jon and say, “Hey, I

want to run this top-level domain.” And Jon looks through his —

they say it’s the infamous black book that he would keep. So He

would flip through his book and say, “Yeah, that’s not being run

here. You’re the administrator to that.”

 That worked pretty well in the early days but as the Internet

became more and more popular, it became apparent that it was

going to break the bounds of University and break the bounds of

government, or DARPA stuff. They needed to develop a way that

— there was one registry and registrar at that point which just

happened — it was Network Solutions. If you wanted a domain

you would go there.

We had no business model. We, as the Internet, had no business

model and they wanted to change that so that there was more

diversity on the network and more opportunities. Many people,

there were people from across RIPE NCC and other entities from

around the world said, “Let’s take that directly out of U.S.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 27 of 47

government control and let’s create an organization that would

handle that.”

 Then we’ll take a sidestep. Jon Postel and his little black book

was the IANA at that point. It wasn’t just domain space. It was IP

addressing. It was also other unique identifiers on the Internet.

Jon Postel and Joyce Reynolds and a handful of others were the

IANA. They were the ones who were assigning unique identifiers.

 That got changed to the concept of the IANA function instead of

the IANA person. It traditionally became called the IANA

function. Now we want to move this IANA function out of direct

government, U.S. government control. How do we do that?

 Well, they decided at that time that opening up a not-for-profit

organization and letting that organization manage the IANA

function was the way to go. Right or wrong, indifferent. That was

a lot of years ago.

 They came up with the concept of ICANN. Primary goal of ICANN,

in the beginning, was to house and run the IANA function and to

promote more diversity and name registration because this is

when the .com was starting — the bubble was starting to grow

and create more diversity on the network.

 ICANN was founded, I believe in 1998 and it brought in the IANA

function. Now, at the time ICANN was under an MoU,

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 28 of 47

Memorandum of Understanding with the U.S. government

Department of Commerce. At the same time, the IANA function

was still under the auspices of the U.S. government but the DOC

didn’t want to run it directly. Before they were letting USC ISI run

it.

 There was a separate contract of performance that was taking

place and then we had this contract of Memorandum of

Understanding and that’s why see two as we move forward. We

had ICANN’s MoU that needed to continue forward to reach

whatever milestones that the contract mandated but ICANN was

running the services of IANA, the function of IANA and that was

given to them under contract through the Department of

Commerce.

 We had one side that was a Memorandum of Understanding.

There was a recognition that ICANN was the entity that was

going to manage the domain space. But IANA as a function — it

was a contract that needed to be given to somebody by the U.S.

Government.

 As that matured, through the years, we saw the MoU turned into

the JPA or something like that. The IANA contract stayed as IANA

contract and then last year or the year before that is when the

Department of Commerce said, “We feel ICANN is mature

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 29 of 47

enough now as an organization,” whether you guys agree or

don’t. I’m not here to argue that semantic.

The U.S. government felt that ICANN was mature enough at that

point to be able to handle running the IANA function as an entity

that’s not mandated by the U.S. government. The U.S.

government wanted to step back and they wanted to have an

equal partnership role with the rest of the Government Advisory

Committee.

 That’s when we started seeing the work on the IANA transition

taking place. That all turned out to be a new organization PTI

now runs the IANA function that has agreements with ICANN and

I don’t know the nitty-gritty details on that.

 That’s how we moved from U.S. government stewardship

completely and then a parallel road down to where we stand

today. I hope that answered your question.

UNIDENTIFIED FEMALE: Yeah, but just one more quick follow-up. So the PTI is a separate

organization. Is it not within ICANN?

STEVE CONTE: I don’t know for sure.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 30 of 47

UNIDENTIFIED FEMALE: Okay.

STEVE CONTE: There’s a very close partnership to that and I don’t want to

misrepresent what that partnership is. I’m not trying to evade

you, I just don’t want to give you a wrong answer.

UNIDENTIFIED FEMALE: No, no. Sure. And one last thing. When we’re talking about these

two separate types of contracts, is it more or less correct to say

that the IANA function is more about IP allocation and the DNS

function is more about the naming itself?

STEVE CONTE: The IANA function is more about the unique identifier

management and that includes the DNS from a technical

perspective from managing that but it also includes IP

addressing, autonomous system numbers, port numbers. There

is a list of registries of unique identifiers that IANA is either the

repository for managers. ICANN is not responsible for the market

— I’m going to say this probably wrong, too. I’m a tech. I’m going

to policy stuff wrong. I apologize. They’re more about the

market diversity of the domain name system. If I said this wrong,

don’t go up to the open mic on Thursday and say, “That Steve

guy said.” Because I’m already wrong. I know it.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 31 of 47

 You have a question? Kathy.

KATHY: I have a question from remote participant Alexandrine: “What

are the current challenges of the DNS and how will it likely

evolve to meet those challenges?”

STEVE CONTE: That’s a great question. I’m going to open that up to you to guys.

Do you guys have any idea or thoughts of what the challenges of

DNS is and evolution? Please?

UNIDENTIFIED MALE: Obviously recently we had the DNS outage.

STEVE CONTE: Yeah.

UNIDENTIFIED MALE: Which took down a lot of big sites so that was obviously a pretty

obvious flaw in the DNS architecture, I would say.

STEVE CONTE: I would agree with that. There was an attack on Dyn a while ago.

It’s interesting and I don’t want to misconstrue what Dyn is

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 32 of 47

because they are a very robust network and they got the smart

people there. I don’t think it was the fault of Dyn that the

ramifications of this attack took place. I think what we’re seeing

is an explosion of size of attack vectors that we’re starting to see

more and more of.

 The root servers have always been under attack. If we looked at

the root server logs right now we would probably see an attack

going on. The rule of thumb has always been to over-provision

the root servers to be able to handle that.

 Dyn did the same thing. They’re anycast, they’re over-

provisioned. I think one of the challenges was that maybe some

of the consumers of Dyn put too many eggs in one basket and

that means that they put all their services, DNS services, within

the DY Dyn N infrastructure.

 When Dyn took the brunt of that attack many of the consumer,

which is Amazon or whoever was on there. I don’t know for sure

if it was Amazon. They felt the brunt because they had no

secondary servers or not many outside of the DYN infrastructure.

That’s, I think, certainly is a challenge that we’re facing is that

botnets are becoming larger. They are becoming smarter.

 You mentioned blockchain. I think that’s a potential

evolutionary path for naming. I don’t want to say specifically

against the DNS but for naming functionality. DOA, Digital Object

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 33 of 47

Architecture, could be another evolutionary path for naming on

the Internet. There’s been attempts at other methods in the past

and DNS seemed to be more robust.

 As far as evolution goes, we’ve seen the 2008 or 2009, we saw the

root sign with DNSSEC which is not a cryptographic signature as

far as it won’t encrypt the data that’s being asked but it does

authenticate that the request you made, the answer that you’re

getting from the request you made is coming from the entity

that you ask that question to.

 It’s just a chain of trust that you’re asking the question. You’re

getting the answer from the person that you thought you asked

the question to. That’s getting more and more, we’re not 100%

penetration on DNSSEC yet. We’re still working on that.

 The next neat thing is just around the corner and, I think, as we

see new ideas evolve, such as blockchain, such as Namecoin or

whatever, there’s going to be an opportunity to either replace or

enhance the Domain Name System and that’s yet to be seen, I

think.

 Anyone else? Please.

UNIDENTIFIED MALE: Hi. It’s a technical question. Looking at your example.com

illustration up there, the caching resolver, how strict does it

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 34 of 47

have to be about honoring the TTL because, I don’t know if it’s

true, but I’ve been told at some large commercialized piece

when running caching DNS will not respect the TTL given out by

Upstream-Name Service.

STEVE CONTE: I’ve seen that happen before. That falls into what ITFers and

system administrators want it called, BCP, Best Common

Practice. TTL works, just like the DNS works just because people

believe it works. They say it and this is the TTL or the DNS

structure works because people believe it and they’ll install

servers that follow that belief.

 I know you can override a TTL at a recursive nameserver level if

you’d like. Some try to do that. Hotels, in the past, have done

that. I’ve seen where they will act for the best interest of their

patrons at the hotel and they will keep that TTL for three or four

days or more because it costs them and bandwidth to go get

new answers.

 There is a functionality to do that. I can’t speak to any specific

ISP that’s doing that and I hope that unless there’s a real need to

override the BCP or the TTL in that, I would hope that people just

let the network be organic and run as it was developed to be.

 Yeah. Then I’ll go to you.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 35 of 47

UNIDENTIFIED MALE: Okay. Great. Could I make one other question, if I’m allowed?

STEVE CONTE: Yeah.

UNIDENTIFIED MALE: We see on the WHOIS record and such spaces the terminology

primary and secondary name servers.

STEVE CONTE: Yes.

UNIDENTIFIED MALE: Technically, is there any difference?

STEVE CONTE: Yes and no. Okay. See if I can get to the slide here on that.

 At any authoritative level, you should have more than one name

server and that’s going to help against redundancy. It’s going to

help against topographical and geographical availability. Having

13 identifies of the root server but over 600 instances is a very

resilient network.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 36 of 47

 If you attacked the root servers today, the root servers would be

like, “Oh, get away from me.” If you attacked the root servers

eight years ago, you’d be hitting them up here but because of

that you have a much more diverse network and that’s resilient

to attack. It’s diverse and it allows quicker responses from other

places and if there is an outage in any part of the network,

there’s other places that it can route too.

 Having a number of name servers serving a specific zone is

beneficial. I don’t know the number of TLD servers especially

when we look at .com or .net. I suspect it’s very high. If we look

at a smaller ccTLD, it might be smaller. The number of name

servers might be three or four of them.

 When you look at a company, a domain name, they might only

have one or two of them. Hopefully, more than one. One is like, if

you can’t reach the name server for your company, then no one

can reach you and if you’re a bank, you can’t make money. If you

have a domain, you should have at least two, hopefully, more,

name servers.

 Now, the information they’re giving is identical. So if I have three

name servers in example.com, the information that they serve,

you could touch any one of those and they should be giving you

the exact same information. One of those typically is called a

primary server and the other ones are called secondary servers.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 37 of 47

The only distinction between that is as an administrator, you

want to only put that information, the new information, into one

server and not three or not 600. You don’t want to go 600 times

and type changes in.

You have one server that acts as a primary server and then the

other one, the secondary, will go and ask occasionally. That also

has almost a TTL. They’ll go ask occasional to the primary server

and say, “Hey, do you have any changes?” The primary server

will say, “Nope.” It’ll say, “Okay, we’ll ask you again.” Comes

back a little time later and says, “Hey, do you have any

changes?” And this time the primary server had a change that

was put in by the zone administrator and they say, “Yeah, we

do.” And it passes that new information to the secondary servers

then.

There would be a period of milliseconds which the data might

not be in sync but it would be sync very quickly after that.

Now, on top of that, your primary server might not even be

publically available. You might hide your primary server behind

a firewall to protect that data because that’s the data that you,

as the zone administrator, are touching. You might put that

behind a firewall and only allow access to the secondary servers

that are publically available.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 38 of 47

The only servers that might be touching the primary would be

the secondaries and it might not act as a recursive server or as a

public server, I should say.

UNIDENTIFIED MALE: Just take that example then. The hidden primary server. That

would not appear in WHOIS record, correct?

STEVE CONTE: I’m sorry. Say that one more time.

UNIDENTIFIED MALE: You’ve got a hidden primary name server with multiple

secondaries so that would not appear in the WHOIS record,

would it? Because it’s not been publically cleared?

STEVE CONTE: Correct.

UNIDENTIFIED MALE: It’s that cross-over between the technical side and requirements

for those WHOIS records because obviously registrars normally

take WHOIS records and put it into the correct stream data.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 39 of 47

STEVE CONTE: Yes. So if you had a hidden primary it would not be in the WHOIS

because you’ll only want to serve your secondaries.

UNIDENTIFIED MALE: So what was the rationale between the original WHOIS record

showing the primary and secondary tertiaries or name servers?

STEVE CONTE: WHOIS is one of the oldest protocols on the Internet so the

rational is that they didn’t think of it at that point. Even back

then, though, there was still no differentiation between primary,

secondary tertiary, whatever. They should all be serving the

same data.

 Ma’am, I’m sorry. Thank you.

UNIDENTIFIED FEMALE: [inaudible] from Sudan, ICANN Fellow.

STEVE CONTE: Welcome.

UNIDENTIFIED FEMALE: It’s a technical question related to DDNS, its Dynamic DNS. For

example, in case I have a home lap and I need to access it

remotely but the public IP I provided by the ISP is changing. I

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 40 of 47

have told that DDNS, setting up Dynamic DNS it can help. So

how it works? Thank you.

STEVE CONTE: I agree with that and it does help especially if you’re behind a

private network. My understanding of Dynamite DNS is that it

really is playing with the TTL of the domain name on that.

They’re setting the domain name very low so that they can have

dynamic changes very quickly.

 It’s probably much fancier than that at the application level

where the server is, but from the DNS perspective it’s probably

just a very short TTL which means that the domain that you’re

dynamically assigning to has a very short cache time which then

if someone is coming back to you and you just assigned a new

address, they will catch it very quickly before and it won’t

timeout on them.

 Sir, let me bring the microphone over to you.

UNIDENTIFIED MALE: Statistically speaking, when you’re migrating a set of DNS

servers, what is the biggest issue that has been faced by the

various registrars? So when you’re changing DNS servers and

basically you have an outage.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 41 of 47

STEVE CONTE: When you, as the domain holder, are changing DNS servers.

Okay. What you’re hitting with and that’s what they call a

propagation period where you’re changing DNS servers or DNS

providers or something like that is you’re submitting new DNS

information up to the TLD. If I change the NS or the IP addresses

from my name servers at the domain level, I’ve got to push that

up to — and I usually do that through a registrar and I’ve got to

push that into the TLD, I am now subject to the TLD’s caching –

the Time to Live on that.

As you mentioned before, we might be looking at five minutes

but that’s probably not every single TLD. If you’re at a lesser

known top-level domain or a country code TLD, they might have

a longer period of the — the TTL might be longer which takes

longer than for the caches to expire and propagate so then they

have to go ask that question again.

If you are migrating your name servers, you might want to find

out what the TTL is on your top-level domain to that domain. If

you are five minutes, then your propagation is probably going to

be very small. If they do have a 6, 8 hour, whatever, then the

caching of the last time that they spoke could be up to that

amount of time.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 42 of 47

It’s really a question of the TLD and what their default TTL is on

that.

Sir. Just to let you know. Him then you. We are at time. I’m

happy to stay if you guys want to ask more questions but I want

to let — feel free to step up and go at any time.

UNIDENTIFIED MALE: I just wanted to give a shout out to a couple of sites like

“whatsmydns” and “checkmydns” where you can check the

global propagation level. When you’ve made a change or a

customer has made a change you can look on this site and see

what the global propagation is and then you can send a link to

that customer.

STEVE CONTE: Checkmydns and whatsmydns, is that what you said?

UNIDENTIFIED MALE: Yep, yep.

STEVE CONTE: Probably you need to Google those.

UNIDENTIFIED MALE: Google those.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 43 of 47

STEVE CONTE: Am I 6:30 instead. Oh, we got 28 minutes. So ask your question.

Ask it slowly. We’ve got plenty of time.

RAZA QURESHI: I’m Raza from MCI. As I [noted], two other DNS type in [telecom]

industry, [inaudible] DNS and PS or 3G, 4G DNS. Is there any

convergence program to converge these three kind of DNS,

especially only one we are following up such project such as IOT

(Internet of Things)? Thanks.

STEVE CONTE: That’s a good question and I don’t think I can answer that one. I

don’t have the information or the knowledge on those DNS. So I

apologize on that.

 But I did think of a separate thing for you. Sorry.

 So your question was moving your nameserver addresses to

different name servers. Something you could do, since you’re a

good Internet citizen, you’ve got more than one name server,

you can have overlap. Move one name server to your new server

and keep your other one running. Let that new name server go

through propagation. It’s now live and then you can move the

other one over as well.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 44 of 47

 You basically set it up as a third name server. If you have two

name servers, just add one.

UNIDENTIFIED MALE: [inaudible]

STEVE CONTE: Yes. So it has the same information but it’s using the new IP

space that you just moved to. As it comes seen around the

Internet, then take on off and add another one and that way you

can slowly migrate yourself from one network to another

without having any loss of propagation.

 Did you have another question?

UNIDENTIFIED MALE: Just on that topic. If you do that, so long as the details are the

same, there will be no conflict.

STEVE CONTE: Yes. You want to make sure that the data that the new name

servers are getting is exactly the same and being a slave, a

secondary to that data. Then once you have them moved over

then you can deprecate your old numbers and remove them

completely from you NS records and stuff.

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 45 of 47

 Any other questions, comments? Nothing?

All right. We’ve got 26 more minutes. We can just sit here quietly

then. Yes, please, sir.

UNIDENTIFIED MALE: Can I just ask again about caching. NXDOMAIN is no record

found. No result.

STEVE CONTE: Yes.

UNIDENTIFIED MALE: And that’s never cached. Is that true?

STEVE CONTE: I believe it’s true. I’d have to actually look that up. That’s a great

question. So the NXDOMAIN is a flag in the DNS that gives you a

positive/negative. It’s kind of weird but it does. This allows the

DNS servers, the caching servers and it must have a cache

because it’s going back to the recursives.

To say if I’m going to blahblahblah.com, and no one registered

it, instead of just not getting an answer, which is ambiguous,

because it could just be as far as the DNS, the recursive name

server is going it could just think that the name server didn’t get

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 46 of 47

the question or it didn’t get the answer so it’s going to ask that

again. By giving a positive/negative from a TLD or from the roots,

it’s saying, “I heard you and there’s nothing I can give you.

There’s no such domain.”

 So there must be a TTL on that because if we go through new

TLD rounds, new gTLD rounds and we’re introducing new top-

level domains, next week there could be a .steve and I might be

on the luckiest guys in the world but if that doesn’t have a cache

and it returns an NXDOMAIN because someone searched

something.steve, up here a year ago, if it doesn’t deprecate, if it

doesn’t expire as a TTL, then they would never, ever get there. I

would assume that there is a TTL on NX record as well.

 Nothing. All right. I’m going to let you guys go then. This is your

chance. Going, going.

 There is a more formal slide deck. It is online. It does have a

whole lot of data and boring stuff. We’re a nice small crowd. I

didn’t want to go through that and just have you guys glaze

over. I’d rather have the dialog and the conversation today.

 I hope it was okay for you. It was way more fun for me. I’ve done

this a lot and I’d rather have a conversation then point and say,

“Next slide please.”

COPENHAGEN – How It Works: DNS Fundamentals EN

Page 47 of 47

 Thank you guys very much. Feel free to ask questions. I’m here

throughout the week. Feel free to download the slide deck. Do

whatever or feel free to ignore me in the hallways. That’s cool

too. I will take no offense to that.

 Thank you all.

[END OF TRANSCRIPTION]

