ECDSA adoption in DNSSEC

a view on 3 gTLDs, a special TLD and 7 ccTLDs

UNIVERSITY OF TWENTE.

Introduction

- ECDSA was standardised for DNSSEC in 2012
 —> RFC 6605
- No use at all until end of 2015 (less than 50 domains in our datasets)
- 2015: CloudFlare announces "Universal DNSSEC" On-the-fly DNSSEC signing using ECDSA
- 2016: PowerDNS makes ECDSA the default algorithm

Recap: why use ECDSA?

- DNSSEC suffers from reachability problems because of fragmentation [1] (and yes, that is still a thing in 2017)
- DNSSEC is abused for **amplification attacks** [2] (see e.g. reports from DDoS protection services)
- Common cause: large messages because of large RSA signatures and keys
- Solution: use elliptic curve cryptography
 - Smaller keys, smaller signatures, stronger cryptographic security!

Datasets

Dataset #	TLD	Start date	End date	$\# Domains^{\star}$	$\#Signed^{\star}$	$(\%^{\star})$
	.com			$126.6\mathrm{M}$	0.63M	(0.5%)
Ι	.net	Mar. 1, 2015	Feb. 14, 2017	$15.1\mathrm{M}$	$0.10\mathrm{M}$	(0.7%)
	.org			$10.5\mathrm{M}$	0.08M	(0.7%)
II	.nl	Feb. 9, 2016	Feb. 14, 2017	$5.7\mathrm{M}$	$2.59\mathrm{M}$	(45.5%)
III	.gov	February	14, 2017	1083	990	(91.4%)
	.at			$1.3\mathrm{M}$	$< 0.01 { m M}$	(0.3%)
	.ca			$2.5\mathrm{M}$	$< 0.01 \mathrm{M}$	(< 0.1%)
TT/	.dk	Fobruoru	-14 - 9017	$1.3\mathrm{M}$	$0.02 \mathrm{M}$	(1.8%)
⊥V	.fi	rebruary	14, 2017	$0.4\mathrm{M}$	$< 0.01 { m M}$	(0.4%)
	.nu			$0.3\mathrm{M}$	0.08M	(26.0%)
	.se			$1.4\mathrm{M}$	0.07M	(48.6%)

*On February 14, 2017

data sourced from OpenINTEL (see last slide)

Methodology

- We looked at algorithm identifiers in DS, DNSKEY and RRSIG records
- We distinguish between full and partial deployments:

full deployment if all of these records are present

UNIVERSITY OF TWENTE.

The three largest gTLDs

UNIVERSITY OF TWENTE.

SURF NET

Partial adoption

- Partial deployments also occur for other algorithms
- Causes: no support for secure delegations, operators or registrants not registering a DS

SURF

UNIVERSITY OF TWENTE.

Algorithm distribution in .com

• on February 14, 2017

Making ECDSA great(er) (again)

 If all domains managed by CloudFlare fully deploy DNSSEC, this would make ECDSA "YUGE"!

\mathbf{TLD}	#Domains	#Signed	(%)	%ECDSA	#CloudFlare	%Signed*	%ECDSA*
.com	$126.6\mathrm{M}$	0.63M	(0.50%)	14.73%	1.40M	1.59%	72.5%
.net	$15.1\mathrm{M}$	$0.10\mathrm{M}$	(0.69%)	17.49%	0.15M	1.65%	63.7%
.org	$10.5\mathrm{M}$	0.08M	(0.72%)	17.23%	0.11M	1.73%	63.3%

Adoption in .nl

More than 50% of these partial (CloudFlare) deployments still exist!

SURF NET

Adoption in other ccTLDs

- We also studied 6 other ccTLDs, specifically:
 - .at Austria .fi Finland
 - .ca Canada .nu Niue
 - .dk Denmark .se Sweden

			cc	$\Gamma \mathbf{LD}$		
	.at	.ca	.dk	.fi	.nu	.se
%Signed	0.30%	0.01%	1.81%	0.38%	25.99%	48.59%
%ECDSA P-256	0.99%	41.25%	88.47%	75.13%	14.58%	2.64%

 Takeaway: adoption varies, local hosters adopting ECDSA makes a big difference

Adoption in .gov

- Federal agencies **must sign** their **.gov** domains
- NIST recommended a switch to ECC and larger RSA keys years ago
- So do .gov domains use ECDSA?

NO, NONE, ZERO, ZILCH, NADA.

- Some "fun" facts:
 - 8% of .gov domains exclusively use 1024-bit RSA
 - Six .gov domains still use 512-bit RSA
 - Almost 50% of .gov domains use SHA1 hashing in DNSSEC (against NIST recommendations from 2015!)

Signing with a CSK

- In earlier work, we showed that signing with a Combined Signing Key (CSK) has additional advantages to further reduce fragmentation and amplification
- So we asked ourselves: do people use CSKs with ECDSA?

		,		۲LD or	ccTLI)			
.com	.net	.org	.at	.ca	.dk	.fi	.nl	.nu	.se
97.7%	98.4%	98.4%	74.0%	97.4%	47.8%	99.5%	53.4%	85.4%	99.1%
2.3%	1.6%	1.6%	26.0%	2.6%	52.2%	0.5%	46.6%	14.6%	0.9%
	.com 97.7% 2.3%	.com.net97.7%98.4%2.3%1.6%	.com.net.org97.7%98.4%98.4%2.3%1.6%1.6%	.com.net.org.at97.7%98.4%98.4%74.0%2.3%1.6%1.6%26.0%	.com.net.org.at.ca97.7%98.4%98.4%74.0%97.4%2.3%1.6%1.6%26.0%2.6%	.com.net.org.at.ca.dk97.7%98.4%98.4%74.0%97.4%47.8%2.3%1.6%1.6%26.0%2.6%52.2%	.com.net.org.at.ca.dk.fi97.7%98.4%98.4%74.0%97.4%47.8%99.5%2.3%1.6%1.6%26.0%2.6%52.2%0.5%	.com.net.org.at.ca.dk.fi.nl97.7%98.4%98.4%74.0%97.4%47.8%99.5%53.4%2.3%1.6%1.6%26.0%2.6%52.2%0.5%46.6%	.com .net .org .at .ca .dk .fi .nl .nu 97.7% 98.4% 98.4% 74.0% 97.4% 47.8% 99.5% 53.4% 85.4% 2.3% 1.6% 1.6% 26.0% 2.6% 52.2% 0.5% 46.6% 14.6%

 Takeaway: some operators choose to use a CSK, but there is no clear trend. From other data we know that CSK uptake for ECDSA appears to be higher than for RSA

RSA developments

 But what is happening in the RSA space? 1024-bit is considered too weak, but are people switching?

	KSK: 2048	KSK: 1024	KSK: 2048	KSK: 1280	KSK: 4096	KSK: 4096		!Powe	r of 2
\mathbf{TLD}	ZSK: 1024	ZSK: 1024	ZSK: 2048	ZSK: 1280	ZSK: 2048	ZSK: 4096	Other	KSK	ZSK
.com	59.9%	37.9%	0.9%	0.3%	0.3%	0.2%	0.5%	0.3%	0.4%
.net	54.3%	42.3%	1.3%	0.4%	0.5%	0.3%	0.9%	0.5%	0.5%
.org	55.4%	41.3%	1.1%	0.3%	0.6%	0.3%	1.0%	0.4%	0.5%
	KSK: 2048	KSK: 1536		KSK: 2048		KSK: 4096		!Powe	r of 2
\mathbf{TLD}	ZSK: 1024	ZSK: 1280	CSK: 2048	ZSK: 2048	CSK: 1024	ZSK: 2048	Other	KSK	ZSK
.nl	96.2%	2.3%	0.9%	0.2%	0.2%	0.1%	0.1%	2.3%	2.3%
		·						the second second	

(data is for 2017-02-14)

 Takeaway: window of opportunity to go from insecure RSA variants to ECC algorithms during upgrades or a risk of increases in RSA keysizes for many domains (with the associated problems)

EdDSA

- EdDSA has very recently been standardised for use in DNSSEC (thanks to Ondřej Surý and Robert Edmonds!)
- **RFC 8080** standardises two curves:
 - Ed25519 (algo 15)

256-bit curve, 128-bit security, **highly attractive**, keys only require 32 bytes in a DNSKEY record

• Ed448 (algo 16)

448-bit curve, 224-bit security, high security

EdDSA (cont'd)

- EdDSA support is (virtually) non-existent in software
- There are good reasons to push for support:
 - EdDSA is **much faster**
 - EdDSA keys require only half the space of an equivalent ECDSA key in a DNSKEY record
 - EdDSA has better security properties (see <u>https://safecurves.cr.yp.to</u>)
- So support your favourite OSS project to implement EdDSA!
- SURFnet is pushing for our new HSM vendor to support EdDSA; they claim to have put it on the roadmap

Conclusions

- ECDSA adoption has taken off, there are now significant numbers of domains signed with this algorithm
- Deployments still traceable to a hand full of operators
- Secure delegations through the RRR channel are blocking deployment of DNSSEC in general, and ECDSA in particular

Recommendations

- For DNSSEC signer operators:
 - Planning a new deployment?
 Choose ECDSA P-256 as signing algorithm
 - Existing deployment: Consider switching to ECDSA (or even EdDSA) as part of your upgrade/replacement cycle (not trivial) (this is what we will be doing in 2017)
- For DNS resolver operators:
 - Doing DNSSEC validation?
 Check support for ECDSA, consider upgrading if not supported

SURFnet plans for 2017

- SURFnet will be switching all signed domains to ECDSA P-256 in 2017
- Migrating to **new HSMs**
- Simpler key management scheme: single key ("CSK")
- Live algorithm rollover of about 1200 domains
- We will blog about our progress and share our automation scripts and code

Further reading

- [1] DNSSEC Meets Real World: Dealing with Unreachability Caused by Fragmentation.
 IEEE Communications Magazine, 52 (April), 2014
 <u>http://bit.ly/commag14-dnssec-frag</u>
- [2] DNSSEC and its potential for DDoS attacks Proceedings of ACM IMC 2014, Vancouver, BC, Canada <u>http://bit.ly/imc14-dnssec</u>
- [3] Making the Case for Elliptic Curves in DNSSEC ACM Computer Communication Review (CCR), 45(5).
 <u>http://bit.ly/ccr15-ecdsa</u>
- [4] The Performance Impact of Elliptic Curve Cryptography on DNSSEC Validation To appear in IEEE Transactions on Networking <u>http://bit.ly/ton16-ecc-impact</u>
- Internet Society Deploy 360 Programme, DNSSEC <u>http://www.internetsociety.org/deploy360/dnssec/</u>

Making the Case for Ell Plant on flow(hdt) String for the String for the Case for Ell the string for the Case for Ell	ptic Curves in DASSEC
AULUST A second	${\bf x}_{i}$ is a single straining of the straining of th
1. EXERCISE 11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	11 Control Vector The sector of the theory of the theory of the sector of the theory of the theory of the theory of the the sector of the theory of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the theory of the sector of the theory of the theory of the theory of the the sector of the theory of the theory of t

The Performance Impact of Elliptic Curve Cryptography on DNSSEC Validation near on type (20), Super Inputs, Ann Jacob, ed. Ann Par					

Thank you for your attention! Questions?

acknowledgements:

Thanks to Mattijs Jonker for helping crunch numbers

The results in this presentation were made possible by OpenINTEL, a joint project of SURFnet, SIDN and the University of Twente https://www.openintel.nl/

in nl.linkedin.com/in/rolandvanrijswijk

@reseauxsansfil

roland.vanrijswijk@surfnet.nl r.m.vanrijswijk@utwente.nl

UNIVERSITY OF TWENTE.

