

###

IDN Root Zone LGR Workshop IDN Program | ICANN 58 | 15 March 2017

Agenda

- Root Zone LGR-2
- ⊙ Community Updates
 - Chinese GP
 - Japanese GP
 - Korean GP
 - Thai GP
- ⊙ Q&A

– Asmus Freytag, IP

- Wang Wei
- Hiro Hotta
- KIM Kyongsok
- Jitti Kunphruk

Root Zone Label Generation Rules - 2

Asmus Freytag Integration Panel

LGR-2: What's in It - Scripts

- Added for LGR-2
 - \circ Georgian
 - Khmer
 - o Lao
 - o Thai
- ⊙ Retained from LGR-1
 - Arabic

```
<sup>ქართული</sup>
ளைல்ஜீர
வை
வி
```

- Except for Georgian, all additions are SEA complex scripts
- ⊙ Khmer, Lao and Thai integrated together because related/similar
- ◎ Armenian continues to be deferred until related scripts are available
- "Integration" doesn't mean that LGR-2 will be a single file

LGR-2: What's in It - Files

- Overview document (background)
- Code tables (graphical overview of repertoire)
- ⊙ Merged LGR with
 - integrated repertoire
 - common variant mappings (all blocked)
 - common WLE rules and actions
- ⊙ One Element LGR per script
 - per-script repertoire
 - per-script variant mappings
 - using per-script variant types
 - WLE rules and actions that can be triggered by code points in per-script repertoire
 - plus default rules and actions for the Root Zone (defined in MSR-2)

Georgian

LGR-2 Development

- Each Element LGR:
 - derived from LGR proposal submitted by Generation Panel (GP)
 - Integration Panel (IP) does copy editing of descriptions and annotations for consistency
 - repertoire and rules are unchanged
- \odot Merged LGR:
 - created by mechanical merge (see above)
 - common description
 - o annotations replaced by pointers to element LGRs for details
 - rules, classes and tag values are prefixed by script to avoid name collisions

LGR-2 Verification

- Each GP submits test labels that can be used to verify its LGR
 - Both valid and invalid labels
 - Aim is reasonable coverage of expected contexts
- IP verifies mechanically that Proposal and final Element LGR give same label disposition
- IP verifies mechanically that merged LGR correctly integrates the Element LGRs
- Public comments allow further review and double check by community

LGR-2: How to Use It

Idealized steps in processing a label application:

- 1. Application defines a script context
 - Labels in the Root Zone are in a single script
- 2. Process application using Element LGR for that script
- 3. Determine validity of the applied-for label
 - fits repertoire subset
 - $_{\circ}$ matches context rules on code points
 - matches whole label rules
 - doesn't have reflexive variants that make the label ineligible (e.g. out-of-repertoire-var)

LGR-2: How to Use It (continued)

- 4. Use Merged LGR to check for collisions
 - create "index" variant for label based on merged LGR
 - compare to stored index variants for delegated labels
 - o any match: applied label and all its variants are in conflict
- 5. Use Element LGR in final step to
 - o generate list of allocatable variants
- Other steps in the process will determine which labels and which allocatable variants will actually be delegated

• This is an extended Q&A session:

IP invites questions both on LGR-2 as well as on future Root Zone LGR versions or pending LGR proposals

Update by the Chinese GP

Wang Wei and Kenny Huang Chinese GP Co-Chairs

• Repertoire

• Variant Mappings: CGP interior coordination

- Variant Mappings: CJK coordination
 - J accept all C variant mappings
 - C & K coordination on 258 disagreed variant groups

• Variants

Size of variant group	Number of variant groups	Number of chars
1	11884	11884
2	2800	5600
3	507	1521
4	119	476
5	35	175
6	10	60
7	2	14
8	2	16
		19746

• Variant Types and Sub-Types

"simp"	Allocatable	preferred simplified variant char	
"r-simp"	Allocatable	reflexive preferred simplified variant char	
"trad"	Allocatable	preferred traditional variant char	
"r-trad"	Allocatable	reflexive preferred traditional variant char	
"both"	Allocatable	preferred simplified and traditional variant chars are the same	
"r-both"	Allocatable	reflexive preferred simp and trad variant chars are the same	
"r-neither"	Blocked	Non-allocatable reflexive/original char	
"blocked"	Blocked	Non-allocatable variant char	

• Multiple preferred/allocatable variants

	chars	number of allocatable variants
multiple simplified allocatable variants	4	2
	128	2
multiple traditional	5	3
	1	4

• WLE Rules

Allocatable labels = original input + all simplified + all traditional

```
<rules>
<!--Action elements - order defines precedence-->
<action disp="invalid" match="leading-combining-mark" comment="labels with</pre>
leading combining marks are invalid" />
<action disp="blocked" any-variant="blocked" comment="default action for</pre>
blocked variant"/>
<action disp="allocatable"
                              only-variants="simp r-simp
                                                             both
                                                                   r-both"
comment="simplified label" />
<action disp="allocatable"
                              only-variants="trad r-trad
                                                            both
                                                                   r-both"
comment="traditional label"/>
<action disp="allocatable" only-variants="r-simp r-trad r-both r-neither"
comment="original label"/>
<action disp="allocatable" comment="catch-all" />
</rules>
```


- Provide the rationale for the number of repertoire
 - 19746 is a big number compared with other GPs repertoire
- Limit the number of allocatable labels
 - Limit the number of allocatable variants
 - Multiple LGR execution process

Limit the number of allocatable variants

复旦 >>	复旦;	复旦, 復旦, 褚	旦
复旦 >>	复旦;	复旦	
復旦 >>	复旦;	復旦	
複旦 >>	复旦;	複旦	

Multiple	LGR exe	ecution	orocess

Sub-Type	Туре	
"simp-m"	Blocked	
"trad-m"	Blocked	
"both-m"	Blocked	
"r-simp-m"	Blocked	
"r-trad-m"	Blocked	
"r-both-m"	Blocked	

• WLE Rules

```
<rules>
<!--Action elements - order defines precedence-->
<action disp="invalid" match="leading-combining-mark" comment="labels with</pre>
leading combining marks are invalid" />
<action disp="blocked" any-variant="blocked" comment="default action for</pre>
blocked variant"/>
<action disp="allocatable"
                             only-variants="simp r-simp both
                                                                    r-both"
comment="simplified label" />
<action disp="allocatable"
                              only-variants="trad r-trad both
                                                                    r-both"
comment="traditional label"/>
<action disp="allocatable" only-variants="r-simp r-trad r-both r-neither"</pre>
comment="original label"/>
<action disp="blocked" only-variants="simp simp-m r-simp r-simp-m both</pre>
both-m r-both r-both-m" comment="multiple simplified label" />
<action disp="blocked" only-variants="trad trad-m r-trad r-trad-m both</pre>
both-m r-both r-both-m" comment="multiple traditional label"/>
<action disp="blocked" any-variant="simp trad both r-simp r-trad r-both</pre>
simp-m trad-m both-m r-simp-m r-trad-m r-both-m r-neither" comment="block
any other mixed labels" />
<action disp="allocatable" comment="catch-all" />
</rules>
```


Thanks

Update by the Japanese GP

Hiro Hotta Japanese GP Chair

JGP Meetings & Related Events

- 2014
 - August 29 preparatory JGP meeting (1)
 - September 12 preparatory JGP meeting (2)

JGP meeting (1)

JGP meeting (2)

JGP meeting (3)

- September 24
- October 24
- November 26
- December 18 JGP meeting (4)
- 2015
 - January16 JGP meeting (5)
 - February 4 JGP meeting (6)
 - February 6 submission of JGP proposal to ICANN
 - February 20 JGP meeting (7)
 - March 10
 - March 18
 - April 15

– May 20

– June 17

June 21-25

– September 29

October18-22

- May 15-16 CJK coordination meeting in Seoul
 - JGP meeting (10)
 - JGP meeting (11)

JGP meeting (8)

JGP meeting (9)

CJK coordination meeting during ICANN

JGP establishment approved by ICANN

- JGP meeting (12)
- CJK coordination meeting during ICANN

JGP Meetings & Related Events (continued)

- 2016
 - March 6-10
 - March 20 -21
 - June 27-30
 - September 24 J
 - September 29-30
 - November 4-8
 - November 13-17

- CJK coordination meeting during ICANN
- CJK coordination meeting in Beijing
 - CJK coordination meeting during ICANN
- GP meeting (13)
- CJK coordination meeting in Taipei
 - CJK coordination meeting during ICANN
 - CJK coordination meeting during IETF

Relationship Among CJK Language LGRs

* "Han" is called "Kanji" in Japan, "Hanja" in Korea

Framework of CJK LGR Integration for Han Characters (revised by agreement in Buenos Aires)

Overview of Japanese LGR- α (J-LGR- α)

- Repertoire
 - Consists of characters from 3 scripts (Han, Hira and Kana Jpan in ISO 15924)

Script	# of characters
Han	6358
Hira	85
Kana	89
Total	6532

- Variants & their types
 - No variants
 - Types of imported variants will be investigated and determined after LGR-α from CGP and KGP are proposed
- WLE
 - Rules (although not very many) are under discussion

Development At & After Hyderabad

- Reduction of the number of allocatable labels
 - Variant labels will exist by importing CGP variant and KGP variant characters, although JGP defines no variants
 - Strings containing any combinations of characters are allowed as natural Japanese words
 - Therefore, many variant labels may exist for a label
 - Waiting for Chinese and Korean GP's definition of variant characters, which CGP and KGP are coordinating to converge => making significant progress
 - IP (Integration Panel) requests JGP to reduce the number of allocatable labels
 - Trying some ideas to reduce allocatable labels

Proposal for TLD Application/Evaluation Process Change

• After consultation with ICANN and IP, the idea was temporarily made frozen

- Because such change is not promised to be adopted

Update by the Korean GP

KIM Kyongsok Korean GP Chair

- Introduction
- A list of Hangul Syllables, Hanja characters for K-LGR v0.7 (2017.03.03.)
- Review of K (Korean) and C (Chinese) Variant Groups (Sets)
- ⊙ K-LGR v0.7 (2017.03.03.), # Hanja chars: 4819 -> 4758
- \odot History of KGP activities
- ⊙ Timeline of KGP activities

1. Introduction

⊙ Characters included for "Kore" (Korean Label)

- Both Hangeul (Hangul) syllables and Hanja chars are included in K-LGR

- K-LGR v0.7 (2017.03.03.)
 - 11172 Hangeul syllables
 - 4758 Hanja chars, 152 variant groups
- In Jan. 2017, the Name and Address Committee of Korea Internet Governance Alliance (KIGA, <u>http://kiga.or.kr</u>) formally created a WG for allowing Hanja at the second level under .KR/.한국.
 - The WG started working.

2. K-LGR v0.5 (2016.09.28.)

- A list of Hangul Syllables for K-LGR v0.7 (2017.03.03.)
 11172 Hangul Syllbles (U+AC00 ~ U+D7A3) ← KS X ISO/IEC 10646
- A list of Hanja characters for K-LGR v0.7 (2017.03.03.)

Source of Hanja Character Set	# chars
1) KS X 1001 (268 comptb. chars excluded)	4620
2) IICORE - K column marked	4743
K-LGR v0.7 (2017.03.03.): Hanja List (Union of 1) and 2))	4758

3. Review of K and C Variant Groups (1)

- 3475 C vg's in C-LGR (2017.02.23.) analyzed based on K chars in K-LGR v0.7TMP (2017.02.23.)
 - K-LGR v0.7TMP (2017.02.23.): 4819 Hanja chars and 168 variant groups
 - C-LGR (2017.02.23.): 19744 Hanzi chars and 3475 variant groups (a variant group (set) is composed of two or more variant chars)
- Analysis of 3475 C (Chinese) variant groups (sets)
 - 168 C variant groups where there are two or more K characters
 - K character is a character belonging to K-LGR v0.7TMP (2017.02.23.)
 - $\circ~$ No or just one K char in the remaining 3307 (= 3475 168) C vg's
- No more conflict in variant groups between K-LGR v0.7TMP (2017.02.23.) and C-LGR (2017.02.23.)

3. Review of K and C Variant Groups (2)

- KGP and CGP coordinated to resolve conflicts of variant groups between K-LGR and C-LGR.
 - Three possible scenarios in resolving conflicts:

scenario 1) C vg is kept without any modification (K accepts C position):

- [K: indep (C1), indep (C2)]; [C: vg (C1, C2)] → [K & C: vg (C1, C2)]

scenario 2) C vg is fully split (i.e., no two K chars are included in a variant group)

- [K: indep (C1), indep (C2)]; [C: vg (C1, C2)] → [K & C: indep (C1), indep (C2)]

- [K: indep (C1), indep (C2), indep(C3)]; [C: vg (C1, C2, C3)] →
 [K & C: indep (C1), indep (C2), indep(C3)];

3. Review of K and C Variant Groups (3)

scenario 3) C vg is partially split. (usually) One variant char is split from C vg and that char becomes an independent char.

- a new variant group still contains two (or more) K chars.
- [K: vg (C4, C5), indep (C6)]; [C: vg (C4, C5, C6)];
 → [K & C: vg (C4, C5), indep (C6)]

3. Review of K and C Variant Groups (4)

- Coordination Results (K and C agreed in principle on 2017.02.23. in Beijing)
- ∞ #1a = #1b + #1c
- 1a) 304 Cvg which contain two or more K chars
- 1b) 46 Kvg are the same as Cvg (no conflict)
- 1c) 258 Cvg in conflict (= 304 46) (in conflict)
- 258 Cvg resolved as follows: 258 = #2a + #2b + #2c
 2a) 110 Cvg kept without any modification (K accepts C position)

2b) 12 Cvg partially split (a new variant group still contains two (or more) K chars)2c) 136 C vg fully split (i.e., no two K chars are included in a variant group)

- #Kvg = #1b + #2a + #2b = 46 + 110 + 12 = 168 (K-LGR v0.7TMP (2017.02.23.))
- #Cvg fully or partially split = #2b + #2c = 12 + 136 = 148
- #Cvg in C-LGR (2017.02.23.): 3475

4. K-LGR v0.7 (2017.03.03.) (1)

- K-LGR v0.6 (2016.11.28.) and K-LGR v0.7TMP (2017.02.23.):
 - o 4819 Hanja chars
- K-LGR v0.7 (2017.03.03.): 4758 Hanja chars
 - only 4758 chars in K0 (= KS X 1001) and/or IICORE/K column kept
 - 61 chars in KP0 (= KPS 9566) and/or Hanja Test deleted
- No conflict in variant groups between K-LGR v0.7 (2017.03.03.) and C-LGR (2017.02.23.)

5. History of KGP Activities (1)

2013 Dec: Korean LGP organized 2014 Mar: CJK coordination meeting ICANN 49 @ Singapore Jun: : CJK coordination meeting ICANN 50 @ London; KGP status update Jun: 1st KGP meeting Aug: 2nd KGP meeting Oct: CJK coordination meeting during ICANN 51 LA; KGP status update **2015** Jan: 3rd KGP meeting; KGP reorganized Feb: CJK coordination meeting ICANN52 @ Singapore; KGP status update Apr: 4th and 5th KGP meetings; KGP reorganized May: 6th and 7th KGP meetings (K-LGR-1 v0.1); CJK Coordination meeting in Seoul, Korea Jun: 8th KGP meeting (K-LGR, v0.2 CJK coordination meeting during ICANN53 @ Buenos Aires Jul: 9th KGP meeting and workshop; participated in APrIGF Macau Aug: 10th KGP meeting (K-LGR, v0.3) Sep: 11th KGP meeting Oct: Call for formal Generation of KGP (Korean Script Generation Panel) to ICANN; CJK coordination meeting during ICANN54 @ Dublin

5. History of KGP Activities (2)

2015 Nov: 12th KGP meeting

2016 Jan: 13th KGP meeting Feb: The Korean Community "formally" Forms Generation Panel for Developing the Root Zone Label Generation Rules (LGR), 2016-02-01. Mar: CJK coordination meeting ICANN55 @ Marrakesh; KGP status update Mar: 14th KGP meeting (K-LGR v0.4) Mar: CJK coordination meeting @ Beijing, China Apr: 15th KGP meeting May: 16th KGP meeting Jun: 17th KGP meeting Jun: CJK coordination meeting ICANN56 @ Helsinki; KGP status update Jul: 18th KGP meeting Aug: 19th KGP meeting Sep: 20th KGP meeting; (K-LGR v0.5); CJK coordination meeting @ Taipei, Taiwan

5. History of KGP Activities (3)

2016

Oct: 21st and 22nd KGP meetings Nov: CJK coordination meeting during ICANN 57 @ Hyderabad, India Nov: CJK Coordination Meeting @ Seoul during IETF #97 (K-LGR v0.6) Dec: 23rd KGP meeting

Feb: CK coordination meeting during CDNC meeting @ Beijing, China K-LGR v0.7TMP (2017.02.23.)
 Mar: K-LGR v0.7 (2017.03.03.): # Hanja chars 4819 -> 4758 (61 chars deleted)

6. Timeline of KGP activities

K-LGR

v0.5

K-LGR

v0.6

K-LGR

v0.7TMP

K-LGR

v0.7

K-LGR

v0.4

Appendix. Hanja in K-LGR v0.7 (2017.03.03.): K0, IICORE/K

Venn Diagram of 2 sets showing number of Hanja chars: K-LGR v0.7 (2017.03.03.): 4758 chars K0 (KS X 1001): 4620 chars, IK (IICORE: K): 4743 chars

Update by the Thai GP

Jitti Kunphruk Thai GP Coordinator

- ⊙ Background on Script and Principal Languages
- \odot Code point repertoire
- \odot Whole Label Evaluation (WLE) rules

Background on Script and Principal Languages

- Thai script is an abugida script, written left-to-right, without spaces between words
- No notion of uppercase and lowercase characters
- ⊙ Some vowels are written before and after the main consonant
- Certain vowels, tone marks, and diacritics are written above and below the main character

Selected Languages written in **Thai script**

Code Point Repertoire

- The Thai GP takes code points shortlisted in MSR-2 as a starting point for Thai Script analysis for Root Zone Label Generation Rules
- ⊙ The Thai GP refers to Thai script writing system from Royal Institute of Thailand and refers to various standards such as:
 - $\circ~$ TIS 620 series Standard for Thai Character Codes for Computers
 - TIS 820 series Layout of Thai Character Keys on Computer Keyboard
 - TIS 1566 Thai Input/ Output Methods for Computers

Code Point Repertoire

 There are some of code point are no longer used in the dictionary words, it is still possible to use them in names or brands.

```
่ง ฃฅฦ
```

- ⊙ These have also been used in the movie "ฅนไฟบิน" (in English: Dynamite Warrior, 2006)
- The code point U+0E26 (LU, ฦ) appears in a few Thai words and is often recognized as archaic or poetic. For example, "໗ງສາຍ" (reading "Lue Sai", meaning "great man, King").
 - It is not considered obsolete as its rarity in regular words makes it more popular for use in a person names, such as "นฦเดช" (read "Na Lu Dech" meaning "Powerful Brave Man")

Code Point Repertoire

 There are a few sets of similar code points that are possibly confusable by non-native script users , but are not considered confusable by Thai Script users as they are used commonly in everyday writing.

#	Glyph	Unicode Code Point	Unicode Code Point Name
1	ก	0E01	THAI CHARACTER KO KAI
	ຄ	0E16	THAI CHARACTER THO THUNG
	ภ	0E20	THAI CHARACTER PHO SAMPHAO
2	ป	0E02	THAI CHARACTER KHO KHAI
2	ฃ	0E03	THAI CHARACTER KHO KHUAT
2	ป	OEOA	THAI CHARACTER CHO CHANG
5	ป	OEOB	THAI CHARACTER SO SO
	P	0E04	THAI CHARACTER KHO KHWAI
	M	0E05	THAI CHARACTER KHO KHON
4	Ø	0E14	THAI CHARACTER DO DEK
	୭	0E15	THAI CHARACTER TO TAO
-	ม	OEOC	THAI CHARACTER CHO CHOE
D	ณ	0E13	THAI CHARACTER NO NEN
6	Ĵ	OEOE	THAI CHARACTER DO CHADA
	IJ	OEOF	THAI CHARACTER TO PATAK
7	നി	0E11	THAI CHARACTER THO
	0.0		NANGMONTHO
	٧١	0F17	THAI CHARACTER THO THAHAN

Whole Label Evaluation (WLE) Rules

- 1. No leading combining mark (default WLE)
- 2. Every leading vowel must precede a consonant
- 3. Code points which must follow a consonant
- 4. Context of U+0E31 (MAI HAN-AKAT)
- 5. Context of U+0E30 (SARA-A)
- 6. Context of U+0E32 (SARA-AA)
- 7. Context of tone mark
- 8. Context of diacritic

Update on Whole Label Evaluation (WLE) Rules

Context of diacritic

- An above diacritic MAITAIKHU can follow consonant, above vowel and below vowel
- An above diacritic NIKHAHIT can follow consonant, above vowel and below vowel

Thank You

Engage with ICANN and IDN Program

Thank You and Questions

Reach us at: IDNProgram@icann.org Website: icann.org/idn

twitter.com/icann

facebook.com/icannorg

linkedin.com/company/icann

youtube.com/user/icannnews

gplus.to/icann

weibo.com/ICANNorg

flickr.com/photos/icann

slideshare.net/icannpresentations

