
DNSSEC Key Ceremonies

standardising and automating key security

Benno Overeinder 
Berry van Halderen 

Roland van Rijswijk-Deij

Project rationale

• DNSSEC has seen widespread
adoption over the past decade

• Almost all top-level domains are now
signed

• High-value domains (such as TLDs) need
strong key protection

• Often use HSMs to protect key material

Ceremonies
• HSMs for high-value domains are often air-

gapped for additional security

• Signing with keys in air-gapped HSMs
requires a process or ceremony

• E.g. done for the DNS Root (organised by
IANA)

• Ceremonies are sometimes witnessed by
community representatives or stakeholders

source: https://www.iana.org/dnssec/ceremonies

Ceremony requirements & design

• Until now, these key ceremonies
are often bespoke in terms of
process and tooling

• Making standardised guidelines
can help the community; we
documented this

• Ensure secure ceremonies and
help automate the process

Automation with recipes
• Better standardisation enables better

automation

• We introduce the concept of a "recipe";
coherent set of instructions for key
ceremony automation in the secure
environment with the air-gapped HSM

• Built the tools to execute recipes and
prototype integration with
OpenDNSSEC signer

Cooking the recipe

• Complexity in creating recipe, not
executing it! No complex actions
undertaken during ceremony.

• 3 tools for the ceremony

• generate recipe

• process in secure environment

• export results into operational
environment

version: 1

repositories:

 Bunker: &primary

 module: /usr/lib/softhsm/libsofthsm2.so

 label: Bunker

 pin: 1234

$ oks cook

Recipe Testing generated at 2020-11-27 09:5

Recipe step 1: Process key used in migratio

Recipe step 2: generateKey

Recipe step 3: Generation key used for next

Recipe step 4: Export key hex 521c5afa8ce4c

Recipe step 5: produceSignedKeyset

Recipe step 6: produceSignedKeyset

Recipe step 7: deleteKey

Recipe completed.

Sample configuration file

Before and after cooking
{ actionType: produceSignedKeyset

 actionParams:

 { ownerName: nl

 inception: 2020-11-27 09:59:07

 expiration: 2020-12-27 09:58:07

 ttl: 60

 keyset: [{

 key: {

 keyType: byRef

 keyID: hex 4556957b8ea06427974a50973d5d0d31

 keyFlags: KSK

 keyAlgo: "8"

 } } {

 key: {

 keyType: byRef

 keyID: hex 521c5afa8ce4cc2fde07bd9d40f77b3e

 keyFlags: ZSK

 keyAlgo: "8"

 } }

]

 signedBy: [{

 key: {

 keyType: byRef

 keyID: hex 4556957b8ea06427974a50973d5d0d31

 keyFlags: KSK

 keyAlgo: "8"

 } }

]

 }

}

{ actionType: produceSignedKeyset

 actionParams:

 { ownerName: nl

 inception: 2020-11-27 09:59:07

 expiration: 2020-12-27 09:58:07

 ttl: 60

 keyset: [{

 ...

 }

 cooked:

 {

 '''

 nl. 60 IN DNSKEY 257 3 8 AwEAAb5si0v8pvOpY

 nl. 60 IN DNSKEY 256 3 8 AwEAAbmwnNpRAIUFo

 nl. 60 IN RRSIG DNSKEY 8 1 60 20201227095

 '''

 }

Producing the recipe
• Recipe can be produced entirely

beforehand, w/o need for observers

• The tool supports actually pre-
producing recipes

• The kasp section specifies the key and
signing policy

• Prototype has a full set of features to
support ceremonies, with limitations on
how these ceremonies are structured

version: 1

repositories:

 Operational:

 module: /usr/lib/softhsm/libsofthsm2.so

 label: OKS

 pin: 1234

kasp:

 refresh: P3D

 validity: P1M

 inceptionoffset: PT3600S

 ttl: 60

 ksk:

 algo: 8

 size: 2048

 lifetime: 1Y

 zsk:

 algo: 8

 size: 1024

 lifetime: 1M

transport:

 key:

 label: recipekey

 size: 2048

$ oks -c oks.conf produce example.com 2021-12-31 "Keysets for
year 2021"

Consume and ODS integration
• Output a set of ZSK keys that need to become active

over time

• Consume processing split in two

• all new keys will be imported into the HSM

• with specific time, it will produce the signed
keyset appropriate for that time

• Integration w/ OpenDNSSEC

• ODS has separate signer and enforcer
components

• produced output is ready-to-use signer
configuration (being ODS or potential other
signing solutions like BIND or Knot DNS)

$ oks consume

$ oks consume 202102010000

Future work

• Get community feedback!

• If an interest exists, take recipe API
to IETF for standardisation

• Adoption by other OSS DNSSEC
implementers

Further reading
• We wrote a blog about the project:  

https://blog.nlnetlabs.nl/supporting-dnssec-key-signing-ceremonies/

Thank you! Questions?

	 https://nlnetlabs.nl/

	 q @nlnetlabs

	 labs@nlnetlabs.nl

