
Automatic DNSSEC Bootstrapping
using Authenticated Signals from the Zone's Operator

draft-thomassen-dnsop-dnssec-bootstrapping

ICANN 73 – DNSSEC and Security Workshop
9 March 2022

Peter Thomassen (deSEC, Secure Systems Engineering)
Nils Wisiol (deSEC, Technische Universität Berlin)

https://desec-io.github.io/draft-thomassen-dnsop-dnssec-bootstrapping/

DS Bootstrapping and Why It Needs Improvement

2
* ICANN 54 (2015), draft-ietf-regext-dnsoperator-to-rrr-protocol (2018)

● Various methods have emerged

● Each suffers from one or more downsides
○ Authenticated workflow involves too many steps

● RFC 8078: direct pull from DNS operator
○ in-band (via CDS / CDNSKEY)

○ not secure for bootstrapping

● Proposal: co-publish CDS/CDNSKEY records

with authentication
○ In child zones of the name server names

○ Name server zones must be secure

Registry

Registrar

Registrant

DNS Provider

Automatic actorManual actor

unauthenticated authenticated

push to top pull from bottom

proposed

💡 Use an established chain
of trust (left) to take a detour
● authenticated, immediate
● no active on-wire attacker

CDS Authentication: Co-Publish under Trusted Hostname

3

.

net.

provider.net.

ns1.provider.net.

example.com IN CDS
example.com IN CDNSKEY

com.

example.com.

Registry/Registrar
for example.com.

example IN DS

example.com.

@ IN CDS
@ IN CDNSKEY
@ IN CDS
@ IN CDNSKEY

1

2

3

unauthenticated authenticated

proposed

Technical Considerations
● No collision with primary use of CDS/CDNSKEY (those are apex-only)

● Add extra label: example.com._dsboot.ns1.provider.net.
○ to enable delegation of signaling data to separate zone

○ Update: no hashing of any part of the zone name (enables online generation/signing)

○ allows splitting off DNS operations (e.g. online-signing with different key; delegate by parent)

○ reduces churn on nameserver zone

○ allows discovery of bootstrappable domains using XFR (if allowed)

○ Do you like “_dsboot”?

4

● Name server names are in

secure zones

● Zone not yet secure

Is this useful?
Deployment Requirements

5

25%
Fulfill requirements in Tranco Top 1M

Current Status

6

● Implementation
○ Prototype implementation: github.com/desec-io/dsbootstrap
○ CoCCA: implementation underway for 59 ccTLDs
○ GoDaddy: implementation planned after CDS scanning
○ Cloudflare: experimental implementation planned
○ .cl: implementation finished, waiting for internal approval
○ .ch, .cz: interested

● Adoption of draft by IETF DNS WG in sight
● Post at APNIC Blog to get the word out

https://github.com/desec-io/dsbootstrap
https://datatracker.ietf.org/doc/html/draft-thomassen-dnsop-dnssec-bootstrapping-03.txt

Backup

7

Open Questions

● Should we support sharding, by splitting Signaling Names into several labels?
○ How exactly would that work? Should that be configurable? (How to store configuration?)

● Should the hash(ancestor) label have a PTR record pointing to ancestor?
○ This would allow full enumeration of bootstrappable domains

● For an operator supporting the protocol: is it REQUIRED for all domains?
○ Probably no, as it won’t work with secondary providers?

8

Closed Questions (I)

● If a DNS operator deploys DS bootstrapping, parents may like bulk processing. How is that best
achieved?

○ allow NSEC walking of signaling zone (thanks to Brian Dickson)
○ allow public AXFR of signaling zone (thanks to John R. Levine)

● Should an extra layer be inserted in the Signaling Name to allow parent-specific bulk processing?
(thanks to John R. Levine)

○ Yes
○ compatible with both NSEC walking
○ also compatible with AXFR (but benefit gained only when using subzones for large parents)

● Do we need hash collision mitigation (salt) and/or hash algo upgrade path?
○ No: due to child apex check, collisions don’t affect key integrity
○ In case of collision, bootstrapping fails (for this parent) → fallback to conventional DS init

● Do we want hashing at all?
○ No

9

Closed Questions (II)

● Should the proposal be rephrased as a new mode of operation for RFC 8078?
○ cf. RFC 8078 Section 3.1
○ done

● Drop requirement that all NS responses must agree?
○ No. Otherwise, multihoming with different signers will break the zone.
○ Deployment effort is manageable: 95% of delegations with at least one securely delegated NS

target in fact have all NS targets securely delegated. Also, dropping this requirement would be
inconsistent with requiring records at the child apex to match. It’s also unclear what should
happen in case of contradictory signaling records, if they are not required to agree.

● Registries/registrars can select which TLDs to trust in the chain. Desirable?
○ No (at least in the spec). One could say that you can’t trust a DNS operator anyway if its NS

hostnames are not trusted. (That doesn’t prevent parents from deciding locally to ignore or
reject certain signaling names.)

10

Discussion Point: Do we want the hashed label?
● Reminder: example.h(co.uk)._boot.[…] ↔ example.co.uk._boot.[…]

11

Pros: … yes, please, hash please!

● Helps stay within limits
○ length / no. of labels → less edge cases

● Prevents CDS ambiguity at zone cut
○ What does foo.bar.net._boot.[…] mean?
○ It’s possible that bar.net is not delegated

● Improves privacy during discovery
○ must know ancestor to begin NSEC walk

● Flat structure
○ simplifies scanning logic
○ facilitates adding prefixes → “properties”

… like: _cds.example.h(co.uk)._signal.[…]

Cons: … no, smash the hash!

● Complicates implementation
○ all tooling needs to be able to hash

● Makes debugging more difficult
○ standard tools should suffice (dig etc.)

● Makes synthesis more difficult
○ How to dynamically associate an

incoming query with a target domain?
→ mapping needed (ancestors only!)

○ h(co.uk)._boot DNAME co.uk._boot
(cacheable per parent!)

Do the benefits justify the added complexity?

Securing the example.com delegation (no existing DS)

Assumption: The NS targets (e.g.

ns1.provider.net) live in securely
delegated zones (e.g. provider.net).

(I) On the DNS provider side:

Publish example.com’s CDS/CDNSKEY

records at a “signaling name” under the

nameserver zone:

example.com.ns1.provider.net
12

(II) On the registrar / ccTLD registry side:

When receiving a new NS record set,

1. query CDS/CDNSKEY records from
DNS provider (using all NS names):
○ example.com.ns1.provider.net, …;

2. validate
○ DNSSEC signatures of responses,
○ sanity check (consistency with target zone);

3. publish example.com’s DS records in
the parent zone → done! ✅

Security Model

● We use an established chain of trust to take a detour
○ authenticated, immediate

○ no active on-wire attacker

● Actors in the chain of trust can undermine the protocol
○ can also undermine CDS / CDNSKEY from insecure

○ but: known point in time / window of opportunity much smaller

● Further mitigations exist, e.g:
○ monitor delegation

○ diversify NS TLDs

○ multiple vantage points

13

14

