IPv6: A Pragmatic View

David Conrad

Vice President, Research & IANA Strategy ICANN

Preface

Pol•ly•an•na | pälēlana |

noun

an excessively cheerfor timistic person.

DERIVATIVES

Pollyannaism |-izəm| | qli'ønə'ızəm| noun

ORIGIN early 20th cent.: the nation of the optimistic croine created by Eleanor Hodgman Porter (1868–1920), American on children's stories.

Future of the Internet

The Good, the Bad, and the Ugly

- A transition approaches
 - In the extreme, there are 3 options:
 - The "Bad"
 - Internet growth stops
 - The "Ugly"
 - Layers upon layers of Network Address Translation (NAT)
 - The "Good"
 - IPv6
- "Choose Wisely"

What is IPv6?

- "Internet Protocol Next Generation"
- Core standards finalized by the IETF in 1996
 - Based on "Simple Internet Protocol Plus"
 - Essentially IPv4 with MUCH bigger addresses and simplified header structure
- 340,282,366,920,938,463,463,374,607,431,768,211,456
 - Total number of addresses in IPv6
- 18,446,744,073,709,551,616 (64 bits)
 - "LAN segment" addresses and number of LANs
- 281,474,976,710,656 (48 bits)
 - Number of independent networks

IPv6 vs. IPv4

- IPv6 purported to have (over IPv4):
 - Built in security
 - Higher performance
 - Better support for Quality Of Service (QOS)
 - Built-in Mobility
 - Multicast support
 - Better routing scalability
 - Extensibility
 - "Stateless auto-configuration"
 - More address space

IPv4 Address Consumption

(from http://www.potaroo.net/tools/ipv4/)

"Here Be Dragons"

- Projected IPv4 free pool "completion" dates:
 - IANA free pool: 12 January 2011
 - RIR free pool: 28 November 2011
- What happens after?
 - Internet connectivity costs will increase, e.g.:
 - Capex: White/Grey/Black market for IPv4 address space
 - Current estimated address utilization efficiency is < 10%
 - Exact scenarios open to debate (to put it mildly)
 - Opex: NAT (upon NAT)
 - How many public IP addresses do you really need?

Solution: IPv6

- IPv6 solves IPv4's address limitations
- Lots of ISPs now claim to provide IPv6 service
 - Although sales folks might not know it
- Lots of network products claim to support IPv6
 - For some value of "support"
- IPv6-capable services now appearing
 - e.g., root servers, <u>www.icann.org</u>, etc.
- So what's delaying greater acceptance?

A Problem: Compatibility

- There is little between IPv4 and IPv6
 - IPv6 not backwards compatible with IPv4
 - An IPv6 device can't speak directly with an IPv4 device
 - IPv6 not forwards compatible with IPv4
 - An IPv4 device can't speak directly with an IPv6 device
 - APIs are different
 - Applications must be revised
- Analogy: 110 volt devices in a 220 volt country
 - Need transformers (IPv4 ⇔ IPv6: "NAT-PT")

The Vicious Circle

- 1. End users don't care
 - "What's IP?"
- 2. ISPs haven't had a reason to support IPv6
 - See #1
- 3. Content providers haven't needed to provide their content via IPv6
 - See #1
 - Even if #1 was different, see #2
- 4. Go to 1

Coexistence

- IPv4 is not going to go away on 28 Nov 2011
 - It will just be harder to get
- IPv6 is being supported in the building blocks
 - Vista, XP (sort of), MacOS X, Linux/Unix
 - Cisco, Juniper, Huawei, etc.
- "Dual Stack" transition
 - Both IPv4 and IPv6 running at the same time
 - When destination supports IPv6, it is used
 - Fallback to NAT'd IPv4 when it is not

What's Missing?

- Infrastructure
 - Network Management systems
 - "Customer Premises Equipment"
 - Load balancers
 - Backend systems
 - Customer provisioning
 - Registrar customer facing front-ends
- Software
 - Most applications
- Etc.

Breaking the Vicious Circle

- 1. End users don't care
 - "What's IP?"
- 2. ISPs haven't had a reason to support IPv6
 - See #1
- 3. Content providers haven't needed to provide their content via IPv6
 - See #1
 - Even if #1 was different, see #2
- 4. Go to 1

ISPs haven't had a reason to support IPv6

- Getting IPv4 address space is going to be more expensive after IPv4 "completion"
- One solution: increased utilization efficiency
 - ISPs move internal infrastructure to IPv6, reusing their IPv4 addresses for customers
 - IPv6 support for customers comes free
 - "Dual stack" customers get public IPv6 and NAT'd IPv4 address space
 - IPv6 content increases since IPv4 content provision via NAT'd address space is more complicated

Implications

- IPv6 maintains (restores) the basic Internet "End to End" architecture
 - Intelligence at the edges facilitating innovation
- IPv4, being limited to 4 billion end nodes, cannot grow to meet the world's population, much less the "Internet of things"
 - NAT is a solution, but increases complexity and hence cost and fragility
 - Impedes growth and innovation

What Should Businesses Do?

- Ask vendors about their IPv6 roadmap
 - Simply asking the question raises the temperature
- Add IPv6 support as a 'desirable' feature to network service, hardware, and software procurement
- Turn on IPv6 where it's available, e.g.,
 operating systems, routers, web servers, etc.
 - Prepare your support desks for debugging more network problems

Summary

- A transition is approaching, driven by the "completion" of the IPv4 address space
- 3 options:
 - Growth stops
 - Stay with IPv4 and use NAT
 - Move to IPv6
- IPv6 provides the best alternative for continued growth and continued innovation

Questions?

